Contents in Brief

Preface to the Ninth Edition xv About the Companion Website xvii

Part I The Basic Principles of Gene Cloning and DNA Analysis 1

- 1 Why Gene Cloning and DNA Analysis Are Important 3
- 2 Vectors for Gene Cloning: Plasmids and Bacteriophages 15
- 3 Purification of DNA from Living Cells 29
- 4 Manipulation of Purified DNA 55
- 5 Introduction of DNA into Living Cells 87
- 6 Cloning Vectors for Escherichia coli 105
- 7 Cloning Vectors for Eukaryotes 125
- 8 How to Obtain a Clone of a Specific Gene 151
- 9 The Polymerase Chain Reaction 175

Part II The Applications of Gene Cloning and DNA Analysis in Research 193

- 10 Sequencing Genes and Genomes 195
- 11 Studying Gene Expression and Function 221
- 12 Studying Genomes 245
- 13 Studying Transcriptomes and Proteomes 261
- 14 DNA Editing 279

Part III The Applications of Gene Cloning and DNA Analysis in Biotechnology 293

- 15 Production of Protein from Cloned Genes 295
- 16 Gene Cloning and DNA Analysis in Medicine 319
- 17 Gene Cloning and DNA Analysis in Agriculture 347
- 18 Gene Cloning and DNA Analysis in Forensic Science and Archaeology 375

Contents CONTENTS

Preface to the Ninth Edition xv About the Companion Website xvii

Part I The Basic Principles of Gene Cloning and DNA Analysis 1

1	Why	Gene	Cloning	and	DNA	Analy	/sis	Are	Important	3

- 1.1 The early development of genetics 4
- 1.2 The advent of gene cloning and the polymerase chain reaction 4
- 1.3 What is gene cloning? 5
- 1.4 What is PCR? 5
- 1.5 Why gene cloning and PCR are so important 8
 - 1.5.1 Obtaining a pure sample of a gene by cloning 8
 - 1.5.2 PCR can also be used to purify a gene 10
- 1.6 How to find your way through this book 11 Further reading 13
- 2 Vectors for Gene Cloning: Plasmids and Bacteriophages 15
 - **2.1** Plasmids 15
 - 2.1.1 Size and copy number 17
 - 2.1.2 Conjugation and compatibility 18
 - 2.1.3 Plasmid classification 19
 - 2.1.4 Plasmids in organisms other than bacteria 19
 - 2.2 Bacteriophages 19
 - 2.2.1 The phage infection cycle 20
 - 2.2.2 Lysogenic phages 20
 - 2.2.3 Viruses as cloning vectors for other organisms 26 Further reading 27
- 3 Purification of DNA from Living Cells 29
 - 3.1 Preparation of total cell DNA 30
 - 3.1.1 Growing and harvesting a bacterial culture 30
 - 3.1.2 Preparation of a cell extract 31
 - 3.1.3 Purification of DNA from a cell extract 33
 - 3.1.4 Concentration of DNA samples 37
 - 3.1.5 Measurement of DNA concentration 38

viii Contents

	3.1.6	Other methods for the preparation of total cell
		DNA 39
3.2		ration of plasmid DNA 41
	3.2.1	
	3.2.2	
2.2	3.2.3	Plasmid amplification 46
3.3		ration of bacteriophage DNA 46
	3.3.1	
	3.3.2	
	3.3.3	1 0
	3.3.4	plate lysate 48 Induction of a lysogenic λ bacteriophage 50
		Purification of M13 DNA causes few problems 51
		er reading 53
		on of Purified DNA 55
4.1		inge of DNA manipulative enzymes 57
		Nucleases 57
		Ligases 59
		Polymerases 59
4.2		DNA modifying enzymes 60
4.2	Enzym	nes for cutting DNA – restriction endonucleases 61
	4.2.1	The discovery and function of restriction endonucleases 62
	4.2.2	Type II restriction endonucleases cut DNA at
	7.2.2	specific nucleotide sequences 63
	4.2.3	
	4.2.4	
	1.2.1	molecule 65
	4.2.5	
	4.2.6	Analysing the result of restriction endonuclease
		cleavage 68
	4.2.7	Estimation of the sizes of DNA molecules 70
	4.2.8	Mapping the positions of different restriction sites
		in a DNA molecule 71
	4.2.9	Special gel electrophoresis methods for separating
		larger molecules 72
	4.2.10	Mapping restriction sites by direct observation of
		cut DNA molecules 74
4.3		on – joining DNA molecules together 76
		The mode of action of DNA ligase 77
		Sticky ends increase the efficiency of ligation 77
	4.3.3	Putting sticky ends onto a blunt-ended
	121	molecule 78
	4.3.4	Blunt end ligation with a DNA topoisomerase 82
		er reading 85
		n of DNA into Living Cells 87
5.1	Iranst	ormation – the uptake of DNA by bacterial

4

5

cells 89

ix Contents

		5.1.1	Not all species of bacteria are equally efficient at DNA uptake 90
		5.1.2	Preparation of competent <i>E. coli</i> cells 90
		5.1.3	Selection for transformed cells 91
	5.2		fication of recombinants 92
		5.2.1	Recombinant selection with pBR322 – insertional
			inactivation of an antibiotic resistance gene 92
		5.2.2	Insertional inactivation does not always involve
			antibiotic resistance 94
	5.3		uction of phage DNA into bacterial cells 96
			Transfection 97
			In vitro packaging of λ cloning vectors 97
		5.3.3	Phage infection is visualized as plaques on an agar medium 97
		5.3.4	Identification of recombinant phages 99
	5.4		uction of DNA into non-bacterial cells 101
		5.4.1	Transformation of individual cells 101
		5.4.2	Transformation of whole organisms 102
			er reading 103
6	Clon	ing Ve	ctors for Escherichia coli 105
	6.1	_	ng vectors based on E. coli plasmids 106
			The nomenclature of plasmid cloning vectors 106
		6.1.2	The useful properties of pBR322 106
		6.1.3	The pedigree of pBR322 107
		6.1.4	More sophisticated <i>E. coli</i> plasmid
			cloning vectors 108
	6.2		ng vectors based on λ bacteriophage 112
		6.2.1	Natural selection was used to isolate modified λ
			that lack certain restriction sites 112
		6.2.2	Segments of the λ genome can be deleted without
		422	impairing viability 112
		6.2.4	Insertion and replacement vectors 114
		0.2.4	Cloning experiments with λ insertion or replacement vectors 116
		6.2.5	Long DNA fragments can be cloned
		0.2.5	using a cosmid 117
		626	λ and other high-capacity vectors enable genomic
		0.2.0	libraries to be constructed 118
	6.3	Clonin	ng vectors for synthesis of single-stranded DNA 119
			Vectors based on M13 bacteriophage 119
			Hybrid plasmid–M13 vectors 121
	6.4		rs for other bacteria 122
		Furthe	er reading 123
7	Clan	ing Va	ctors for Eukaryotes 125
/			rs for yeast and other fungi 125
	7 . 1		Selectable markers for the 2-µm plasmid 126
			Vectors based on the 2-µm plasmid – yeast
			episomal plasmids 126

x Contents

	7.1.3	
		Other types of yeast cloning vector 128
	7.1.5	9
	716	pieces of DNA in yeast 130 Vectors for other yeasts and fungi 133
7.2		ng vectors for higher plants 133
	7.2.1	
		genetic engineer 134
		Cloning genes in plants by direct gene transfer 139
	7.2.3	Plant viruses can also be used
7.0	CI .	as cloning vectors 141
7.3		ng vectors for animals 143
		Cloning vectors for insects 144 Cloning in mammals 145
		er reading 148
Ном		tain a Clone of a Specific Gene 151
		roblem of selection 152
		There are two basic strategies for obtaining
		the clone you want 152
8.2		selection 153
	8.2.1	Marker rescue extends the scope of direct
	0.00	selection 155
0.2		The scope and limitations of marker rescue 156
0.3		fication of a clone from a gene library 156 Gene libraries 157
8.4		ods for clone identification 159
0.4		Complementary nucleic acid strands hybridize
		to each other 160
		Colony and plaque hybridization probing 160
	8.4.3	Examples of the practical use of hybridization
	0.4.4	probing 163
	8.4.4	Identification methods based on detection of the translation product of the cloned gene 170
	Furth	er reading 172
Tho		erase Chain Reaction 175
		n outline 176
		n more detail 177
	9.2.1	Designing the oligonucleotide primers for a PCR 178
		Working out the correct temperatures to use 180
9.3		the PCR: studying PCR products 182
	9.3.1	Gel electrophoresis of PCR products 183
9.4	9.3.2	Cloning PCR products 184 ime PCR 186
9.4		Carrying out a real-time PCR experiment 186
	9.4.2	
	7	material to be quantified 188
	9.4.3	Melting curve analysis enables point mutations
		to be identified 189
	Furth	er reading 191

Contents

Part II The Applications of Gene Cloning and DNA Analysis in Research 193

	,	173
10	Segu	ncing Genes and Genomes 195
. •	10.1	Chain-termination DNA sequencing 196
		10.1.1 Chain-termination sequencing by the thermal
		cycle method 196
		10.1.2 Limitations of chain-termination sequencing 198
	10.2	Short-read sequencing 201
	10.2	10.2.1 Preparing a library for an Illumina sequencing
		experiment 202
		10.2.2 The sequencing phase of an Illumina
		experiment 204
		10.2.3 Ion semiconductor sequencing 205
		10.2.4 Directing short-read sequencing at specific sets
		of genes 206
	10.3	Long-read sequencing 207
		10.3.1 Single-molecule real-time sequencing 208
		10.3.2 Long-read sequencing without a DNA
		polymerase 208
	10.4	How to sequence a genome 209
		10.4.1 Shotgun sequencing of prokaryotic genomes 21
		10.4.2 Sequencing of eukaryotic genomes 214
		Further reading 219
11	Study	ng Gene Expression and Function 221
	11.1	Studying the RNA transcript of a gene 222
		11.1.1 Detecting the presence of a transcript in an RNA
		sample 223
		11.1.2 Transcript mapping by hybridization between
		gene and RNA 224
		11.1.3 Transcript analysis by primer extension 226
		11.1.4 Transcript analysis by PCR 227
	11 2	Studying the regulation of gene expression 228
	11.2	11.2.1 Identifying protein binding sites on a
		DNA molecule 229
		11.2.2 Identifying control sequences by deletion
	11 2	analysis 234
	11.3	Identifying and studying the translation product of a
		cloned gene 236
		11.3.1 HRT and HART can identify the translation
		product of a cloned gene 237
		11.3.2 Analysis of proteins by <i>in vitro</i> mutagenesis 238
		Further reading 243
12	Study	ng Genomes 245
	12.1	Locating the genes in a genome sequence 246
		12.1.1 Locating protein-coding genes by scanning a

genome sequence 246

xii Contents

		12.1.2	Gene location is aided by homology
		12.1.3	searching 249 Locating genes for non-coding RNA
		12.1.0	transcripts 251
		12.1.4	Identifying the binding sites for regulatory proteins in a genome sequence 252
	12.2	Determ	nining the function of an unknown gene 253
			Assigning gene function by computer
			analysis 253
		12.2.2	Assigning gene function by experimental analysis 254
	12.3	Genom	e browsers 258
		Further	reading 259
13	Study	ing Tran	scriptomes and Proteomes 261
	13.1		g transcriptomes 261
		13.1.1	Studying transcriptomes by microarray
		13 1 2	or chip analysis 262 Studying transcriptomes by RNA sequencing 263
		13.1.3	Studying transcriptomes by Kitza sequencing 265 Studying transcriptomes in situ 267
	13.2		g proteomes 270
			Protein profiling 270
		13.2.2	Studying protein-protein interactions 274
		Further	reading 278
14		Editing	
	14.1		velopment of DNA editing methodology 280
			DNA editing by homologous recombination 280
	1/1 2		DNA editing with a programmable nuclease 281 DNA editing 284
	17.2		Error-prone editing with the Cas9
			endonuclease 285
		14.2.2	Using DNA editing to make programmed
		4400	sequence changes 286
			Carrying out a CRISPR editing experiment 290 reading 291
Pa	rt III	l Th	ne Applications of Gene
			d DNA Analysis in
CIC	/	9 911	a Pian Allalysis III

Biotechnology 293

- **Production of Protein from Cloned Genes** 295
 - Special vectors for the expression of foreign genes in 15.1 **E. coli** 298
 - 15.1.1 The promoter is the critical component of an expression vector 299
 - 15.1.2 Cassettes and gene fusions 302
 - 15.2 General problems with the production of recombinant protein in E. coli 305

Contents

		15.2.1	foreign gene 305
		15 2 2	Problems caused by <i>E. coli</i> 307
	15.3		tion of recombinant protein by eukaryotic
		cells 30	
			Recombinant protein from yeast and filamentous
			fungi 308
		15.3.2	Using animal cells for recombinant protein
			production 310
		15.3.3	Pharming – recombinant protein from live animals and plants 312
		Further	r reading 315
1 4	Cana		
10			and DNA Analysis in Medicine 319 tion of recombinant pharmaceuticals 319
	10.1		Recombinant insulin 320
			Synthesis of human growth hormones
		10.1.2	in <i>E. coli</i> 323
		16.1.3	Recombinant factor VIII 324
			Synthesis of other recombinant human proteins 326
		16.1.5	Recombinant vaccines 327
	16.2		cation of genes responsible for human
		disorde	
		16.2.1	How to identify a gene for a genetic disorder 333
			Genetic typing of disorder mutations 338
	16.3		herapy 339
			Gene therapy for inherited disorders 340
			Gene therapy and cancer 340
			The ethical issues raised by gene therapy 343
		Further	reading 344
17	Gene		and DNA Analysis in Agriculture 347
	17.1		ne addition approach to plant genetic
			ering 348
			Plants that make their own insecticides 348
			Herbicide-resistant crops 354
		17.1.3	Improving the nutritional quality of plants by
		47.4.4	gene addition 356
	17.0		Other GM crops produced by gene addition 358
	17.2		ilencing 359
		17.2.1	Antisense RNA and the engineering of fruit
		17.2.2	ripening in tomato 359 Using RNA interference to silence
		17.2.2	plant genes 362
	17 3	DNA	diting of crop plants 365
	17.5		DNA editing of phytoene desaturase in rice 365
			Editing of multiple genes in a single plant 367
			Future developments in DNA editing
			of plants 368
	17.4	Are GN	// plants harmful to human health and the
			nment? 369

xiv Contents

17.4.1 Safety concerns with selectable markers 370

		17.4.2	The possibility of harmful effects on the environment 371
		Eusthar	
			reading 372
18	Gene	Cloning	and DNA Analysis in Forensic Science and
	Archa	eology	375
	18.1	DNA ar	nalysis in the identification of crime suspects 376
		18.1.1	Genetic fingerprinting by hybridization
			probing 376
		18.1.2	DNA profiling by PCR of short
			tandem repeats 377
	18.2	Studyin	g kinship by DNA profiling 380
		18.2.1	Related individuals have similar DNA profiles 380
	18.3	Sex ide	ntification by DNA analysis 382
		18.3.1	PCRs directed at Y chromosome-specific
			sequences 382
		18.3.2	PCR of the amelogenin gene 383
	18.4	Archae	ogenetics – using DNA to study human
		prehist	ory 384
		18.4.1	Ancient DNA 384
		18.4.2	Studying relationships between ancient
			individuals and populations 386
		18.4.3	The Neanderthal genome 388
			reading 391

Glossary 393 Index 413