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What Is Biology?

Life is a wondrous phenomenon to anyone who experiences, observes, or contemplates it.
The science of biology aims to encompass and understand the phenomenon of life on Earth,
not only as it exists and could be observed today but, perhaps more importantly, also as it
has existed in the Earth’s past, simply because past life may provide insights to help under-
stand what it is today and what it will become in the future. Furthermore, it includes the
much harder “cosmic” question of its origin. How does life that occurs in ephemeral time
for units of life (e.g. a living cell or a mayfly for one day) manage to persist as long as billions
of years (even in ensembles such as species), despite ever-changing conditions (sometimes rad-
ically) for organisms and their environment? Given the physical nature of time in limited
human minds, questions about the past are difficult; questions about the future are even
harder. In the absence of a time machine that would allow travel into the past to ascertain
what actually happened, what methods and tools has biology used or could use to attempt to
provide answers about the past? How can it anticipate the range of possible outcomes through
predictive approaches? Some specific questions of interest are:

• How did life come to exist? What are its origins? How did the most basic unit of life, a
living cell, come about? Is life possible on other planets? If so, can they evolve? If so,
what is their mode of “evolution”?

• What patterns shape macroevolution, the process that explains the diversity of life
forms? What leads to the origins of major groups (taxa)? What is the cause of mass
extinctions? Can these patterns be used to predict evolutionary changes?

• What processes lead to the formation of new species (speciation)? What mechanisms
shapemicroevolution in general?

• How do complex traits such as behavior and culture evolve? Is there a major “force”
leading to a trait? Is it just the synthesized expression of multigenic effects combined
with environmental factors?

• Is the microbiome’s effect on human health, disease, and the environment larger or
smaller than suggested to date?

Where to begin to address these questions was not ideal (it never is in science), but a lot
of knowledge about them has been gained. Progress in every science usually depends on
progress in others that can be used as new tools (like telescopes in physics and microarrays
in biotechnology). That knowledge can be used to rethink and refine approaches to the
questions for better answers, as will be further illustrated in every chapter of this book.
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2 1 What Is Biology?

As it happens in most sciences, biology has started with a globally observable macro-
phenomenon that is evident around us, (living) organisms. How can these organisms exist,
i.e. function in and interact with others andwith their environments? (Other objects like rocks
and planets do not behave in the same dynamic fashion on the same scales of time). Progress
in science is made by attempting to explain the reasons and causal chains why this phe-
nomenology occurs as it does, from more fundamental forces in the universe. Physics has
demonstrated that most phenomena (physical and even metaphysical) are a consequence
of a few far more primitive and fundamental forces, namely global gravitational and more
local electric andmagnetic forces. However, the gap between them and biological phenom-
ena has remained wide because of the complexity of the interactions and their cumulative
effect over space and time. Developments in biology (e.g. genetics and systematics) and in
other sciences as well (data science, machine learning) have nowmade it possible to tackle
this problem, as is already evident in the field of bioinformatics.
Fortunately for biology, there is a pervasive feature across all organisms (living or extinct),

both in space and time: deoxyribonucleic acid (DNA). It is known now that its structure
has remained essentially unchanged for billions of years (despite drastic changes in the
physical conditions on Earth), resulting in significant changes in the existing biodiversity
it supports. DNA enables replication (the ability to produce an identical copy of itself), the
(re)generation of the entire gene expression machinery, and its self-regulation in a com-
plex organization of life at different levels, including unicellular tomulticellular organisms,
generation after generation. However, different levels of complexity in the molecule play a
fundamental role in the structure and function of different biological groups. Therefore, a
deep examination of the nature and complexity of DNA probably offers a novel and the best
chance to make inroads into these questions. That is the approach taken in this book to the
science of biology. (Answers of a divine origin are a logical possibility and, although briefly
discussed in Chapter 9, fall outside the scope of this book. A more extensive discussion of
the relationship between science and religion can be found in Runehow et al. (2013).)
The goal of this first chapter is to describe the nature and the role of DNA as responsible

for life’s continuity and the transmission of genetic information across generations. This
role is fundamental to the survival and persistence of all known organisms and forms of life.
A major objective is to describe the local physical interactions among basic biomolecules
that make this role possible and give rise to life. In particular, recent results about its
structure (the so-called deep structure of DNA) enable the extraction of the information
contained in DNA that can eventually be leveraged to make fairly accurate predictions
at different biological levels about the past and the future. Third, the relatively straightfor-
ward novel ways to sequence genomic DNA (e.g. next-generation sequencing – NGS) have
recently enabled biologists, as never before, to explore further questions about how species
evolve and investigate the evolutionary relationships among organisms as more species are
described and others have become extinct. Thus, traditional methods in biology have used
comparison through so-called sequence alignments to make inferences about major ques-
tions in biology (e.g. to define species and to infer phylogenetic relationships through the
past and the origin of evolutionary novelties, among others). However, they do not come
without limitations. Therefore, this chapter also reviews available alternative alignment-
free methods that can address the same questions but may offer better or different answers
to these major and intriguing questions. Both approaches offer their own advantages and
disadvantages, so they must be explored comparatively throughout the book.
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1.1 DNA: Nature, Role, and Function

Life has existed and persisted on a changing planet for about 4.5 billion years. It is diverse
and can be found in a variety of conditions (e.g. extreme hot or cold, light or dark, basic
or acidic environments). How does the complex organization of life work to bring about the
variations that exist for all kinds of organisms to survive in these environments? Several major
landmarks in evolution have allowed these increased levels of complexity in the organiza-
tion of life (see Figure 1.1), including:

• Self-replication that allows the genetic material, with the aid of other molecules, to
produce a (nearly) identical copy of itself.

• A nuclear membrane that holds the genetic material inside it and isolates it from the
rest of the cell. Many organisms on the planet are single-celled, but the formation of
tissues (ensembles of cells) makes possible the existence of multicellular organisms.

• Tissues that make up organs, which in turn organize themselves into organ systems
and give rise to complex organisms.

• Organisms that interact and have adaptations to organize into populations (individuals
of the same species living in the same area), communities (populations of different
species living in the same area), and ecosystems (communities of organisms in a given
environment, with both living and nonliving elements).

(a)

(b)

(c)

(d)
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Figure 1.1 Life exhibits a very complex organization. Different disciplines in biology approach
biodiversity at various scales in a hierarchical way. (a) RNA and DNA, the first self-replicating
molecules, and DNA condensation. (b) Combinations of cells may form multicellular individual
organisms (at first with no nuclear membrane), such as membranes and tissues. (c) Tissues make up
organs and systems, and organs form organisms. (d) Organisms self-organize into populations,
communities, and ecosystems.
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The goal of this section is to summarize basic biological knowledge about DNA, the most
important molecule that every single organism contains in abundance and is responsible
for themaintenance of life and the transmission of genetic information to offspring through
generations.
The self-replicating property of DNA is practically identical in all organisms, although

the complexity of how it occurs may vary, particularly among divergent groups. Without
these properties, life is unlikely to exist.What are the processes and mechanisms that bring
about these properties?
DNA goes through replication, only certain regions with particular functions (called

genes) undergo a process of transcription to a similar, shorter-lived molecule, RNA that acts
as a messenger for the translation of the original DNA into its expression, a protein. Gene
regulation controls the timing at which genes are expressed, the location in a given cell
where the process takes place, and the amounts of protein produced. This way, organisms
self-regulate with complex mechanisms that biologists are still trying to understand at vari-
ous levels of organization, such as themaintenance of energy andmetabolism, the response
to stimuli, the strategies for reproduction and development, and how organisms adapt to
changing environmental and ecological conditions.

1.1.1 Nucleotides, Ligation, and Hybridization

The goal of this section is to describe essential local interactions at molecular levels within
a living cell that maintain an organism’s functioning in an environment. It is a well-
established fact that DNA encodes for most of the physically evident (phenotypic) features
of an organism. What may not be well known is that, furthermore, recent works demon-
strate that DNA sequences encode enough information about an organism so that features
about phenotype, taxonomic group, environmental conditions of the natural habitat where
an organism lived and so on, could be predicted to a large extent (Mainali et al. 2020a,b) from
this information, somehow contained and hidden in its DNA and expressed through these
local interactions. Some of these implications will be described in the following Section 1.2.
They require a precise description of the essential facts about DNA’s physical chemistry to
enable a more careful analysis of more pervasive properties in interaction with other DNA
molecules in later sections and chapters.
DNA itself was discovered/identified (nearly 90years before the discovery of its precise

structure) by the Swiss chemist (Miescher 1871), who referred to it as nuclein, at a time pro-
teins were thought to be the primary carriers of heredity’s information due to their wide
variability, consistent with the great diversity of life. It took nearly a century for biolo-
gists to get evidence that perhaps protein is not the carrier (Avery et al. 1944) and nearly
another decade to turn the page on protein (Hershey and Chase 1952) and ascertain that
DNA is the true carrier. The building blocks of DNA formation are relatively simple chem-
ical molecules called nucleotides or bases. Figure 1.2a shows the two kinds, purines and
pyrimidynes. Nucleotides can form chemical bonds to produce two kinds of biomolecules,
Ribonucleic Acid (RNA) and DNA, two particular kinds of polymers herein simply referred
to as strands throughout. Each can be a single or a double strand. Single strands are obtained
when nucleotides are joined by covalent bonds into longer and longer strands, herein
referred to as n-mers if n nucleotides are involved, in a chemical reaction called ligation.
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Figure 1.2 The essential molecules for life on Earth include single nucleotides of DNA a (adenine),
c (cytosine), g (guanine), t (thymine), strands of these, and double helices. Nucleotides are classified
into purines (two carbon rings) and pyrimidines (one carbon ring). (a) They ligate through covalent
bonds to form single-stranded DNA molecules (lower left) with dangling hydrogen (H–) atoms.
(b) Single strands bond with other corresponding (2 or 3) H-atoms in Watson–Crick (WC)
complementary molecules (upper right) to form double helices. RNA behaves likewise, except that
t is replaced by u (uracil).

A singlemolecule is an ordered structure with a “head” and a “tail” determined by the posi-
tions where they attach to the carbon atom in the backbone (the 5′ or 3′ end). They will be
described by strings (or “words”) of nucleotide characters over the alphabet {a, c, g, t}, e.g.
5′−acgt−3′ and cgta are two very different strands chemically. (For simplicity in this book,
they will always be written in lower case letters beginning with 5′− toward the 3′−end [so
the end references can be omitted] and will be further explored in Section 9.1.1). Ligation
canhappen freely amongnucleotides, so that the exact number of possible strands of a given
length n grows exponentially with n, as 4n.
Furthermore, two single strands can then bond through a process called hybridization to

form the familiar double helix (or duplex) proposed by Watson and Crick (1953) to be the
basic structure of DNA, as illustrated in Figures 1.2 and 1.3. The simplest example consists
of two nucleotides bonded by hydrogen (H—) bonds. The bonds are very stable when the
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nucleotides are WC complementary, i.e. when they form a WC-pair of either c − g (3 H-
bonds), or a− t (2 H-bonds), but mix-ups (a−c, or a−g, or c− t or g− t) may be forced when
they are a part of longer single strands and next to other neighboring nucleotides that are
perfect WC-complements and favor hybridization. For every single strand, there is another
perfectly matched DNA molecule that it may hybridize with itsWC complement, obtained
by reversing it and swapping the nucleotides for their WC-complements. The hydrogen
bonds between a mismatched pair of nucleotides are not very stable by themselves. Two
WC-complementary molecules have perfect hybridization affinity, but their bond may be
stable even with less than perfect affinity (more details below). Thus, single strands can
actually hybridize even under less than ideal conditions of perfectly WC-complementary.
The chemistry of hybridization requires the 5′- and 3′-ends to face each other, so one of
the strands has to reverse direction as well to form the helix. Hybridization of two single
DNA strands to form a double helix (also called a duplex), is an essential process, for exam-
ple for self-reproduction. Thismost fundamental and powerful property drives the exquisite
discriminating ability in forming double strands (helices) in most other cell functions, as dis-
covered by subsequent research following up on the elucidation of the nature and structure
of DNA by Franklin and Gosling (1953) and Watson and Crick (1953). The physical chem-
istry of hybridization of specific pairs is not fully understood, and it is very hard to predict
whether and how it will actually happen between two given strands x and ywhen they come
in close proximity (within nanometers), even in the case where they are identical. Segments
of the strand actually may hybridize to other WC-complementary segments to form what
is called its secondary structure (illustrated in Figure 1.3). Very long double strands (e.g.
in human chromosomes with millions of nucleotides) develop even a tertiary structure by
coiling and twisting about themselves, as in the natural state of DNA chromosomes (more
in Section 8.2.3).

(a)

(b)

(c)

(d)

Figure 1.3 DNA strands bond in endless ways. (a and b) Double strands of DNA are formed by
hybridization of two single strands. (c) Several double helices (red, blue, and green) can have
dangling “sticky” ends that can hybridize to analogous complementary sticky ends (of the same color)
in other molecules (called “tiles”) to form DNA complexes, e.g. periodic structures in a process of DNA
self-assembly (Seeman 2003). (d) Artistic rendition of a DNA macromolecule with the connectivity
of a geometric cube synthesized in a test tube by using copies of the molecular tiles in (c) to build
artificial nanostructures through a process of self-assembly (Chen and Seeman) (more in Chapter 8).
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Chemically, hybridization is governed by the Gibbs energy of hybridization, i.e. the phys-
ical energy released (i.e. negative) when two single strands of DNA bond together to form a
more stable double helix in an exothermic reaction, akin to potential energy in physics. The
process can be reversed by an endothermic reaction that supplies the energy back (e.g. heat-
ing the molecule to about 90 ∘F) so that the H-bonds dissolve, and the duplex breaks back
into two single strands. When the Gibbs energy drops below a certain threshold, affinity
is enough to hold the single strands together in a stable double helix. The precise thresh-
old can be pinpointed by experimental measurements using high-resolution calorimeters,
originally obtained by statistical averages in populations of like molecules with the same
composition, but more recently with individual molecules and pairs using optical tweezers
(see Gieseler et al. 2021). A threshold commonly used for hybridization is −6 kcal/M for
short oligonucleotides (length under 60-mers) and it will be used in the following sections.
Gibbs energies depend on physical parameters (such as the internal energy, pressure, vol-

ume, temperature, and entropy) of the environment in which the duplex is formed, in addi-
tion to the predominant specific sequence (composition) of the strands. The more negative
the Gibbs energy, the more stable the duplex formed. Unfortunately, the available mod-
els in biochemistry provide no gold standard to determine Gibbs energies exactly, other
than just accepted empirical approximations (Wetmur 1999), so models have been devel-
oped to estimate it. The most popular is the nearest-neighbor model (NNM) (SantaLucia
1998), although there are more sophisticated models (e.g. the staggered-zipper model) that
account for stacking effects, e.g. a bonding pair c − g makes it more likely that neighbor-
ing pairs will hybridize even if they are not WC-complementary. NN is an additive model
that adds up the Gibbs energies of facing pairs in specific alignments of the strands (includ-
ing single nucleotides without a matching nucleotide) to determine the total Gibbs energy
released. As usual, the molecules will optimize the physical process and hybridize in the
frameshift, releasing themost Gibbs energy (something akin to a ball dropping to the lowest
possible point when released in a gravitational field to release the most potential energy).
Given the enormous abundance of many different DNA strands (e.g. a human has in the

order of 22 000 genes), understanding the behavior of an organism’s genomics requires fine
discrimination of which DNA molecules one will hybridize to among the many possible
competitors available in the pond of the surroundings, offering different affinities. They
present a so-called hybridization landscape to solve an impossibly difficult minimization
problem. How to approach it, even if only an approximate solution is possible? These ques-
tions will be addressed in Section 1.2 after describing the accumulated larger role that DNA
plays in life self-organization at the macro-level as a result of these local interactions at the
micro-level.

1.1.2 DNA: Its Role and Function

Biology has developed numerous approaches and tools for the study of biodiversity from
different viewpoints, including ecological, systematic, evolutionary, and genetic. Empiri-
cal and theoretical approaches afford an understanding of any taxonomic group and its
dynamic diversity, as to why it either persists or reaches extinction. The traditional dis-
ciplines of biology have been strengthened with tools for handling enormous amounts of
information, particularly in disciplines such as genomics and bioinformatics. Today, bio-
logical science seeks to explain the reason for the evident diversity, anticipate possible
changes resulting fromglobal climate change, and predict possible consequences in the face
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of a changing planet. Yet, it is also remarkable that our knowledge of the essential DNA
molecule has not deepened in its own right after its discovery, an issue to be addressed
later in Section 1.2, after summarizing first its deep impact on other aspects of the diversity
of life.
Organisms are broadly classified into two categories: procaryotes and eukaryotes, based

on the presence or absence of a nucleus within the cell. The first one includes organisms,
which do not have a nuclear membrane, so genetic material remains within the cytoplasm,
where all processes related to the function of the cell take place. In the second category,
organisms do have a nucleus and amembrane that separates its contents from the rest of the
cell. Some processes take place within the nucleus, whereas others occur in the cytoplasm.
The genome is thewhole set of geneticmaterialwithin a cell thatmay include just a fewhun-
dred genes, or inmany cases thousands of genes. Despite differences in genome size, DNA is
similar in symbiotic bacteria, the smallest genome size found so far (139–250Kbps) encod-
ing about 121–127 proteins (McCutcheon and Moran 2012) to the largest genome reported
for a eukaryote in the angiosperm Paris japoniza with a genome of ca. 148 000Mbps
(Pellicer et al. 2018). Viruses also contain genetic material (DNA or RNA) even though they
are not considered living organisms because they do not require a substrate to feed and sur-
vive, they do not communicate through quorum sensing like bacteria do, and they do not
reproduce asexually or sexually. Instead, they replicate by using the replication machinery
of a host (Sanjuán and Domingo-Calap 2016).
A gene is a stretch of DNA encoding for a protein. These long stretches of (21) amino acids

provide enormous diversity in structure and function. Genesmay vary in length, from small
sizes as 76 bps as in human histones (Alberts et al. 2002), a protein responsible for the struc-
tural support for a chromosome. Others may be very long, such as the dystrophin gene that
spans 2200 bps in humans, a protein important for both skeletal and cardiac muscle move-
ment (Monco et al. 1986). At any rate, the flow of information starts with DNA encoding
the genetic information; DNA is then copied to messenger RNA (mRNA) for some genes,
through a process called transcription (each triplet or 3-mer of DNA constitutes a codon
that basically encodes an amino acid). This mRNA participates in the process of translation
where a new protein is produced. This flow of information in one direction, from DNA to
RNA to protein, or RNA directly to protein, is referred to as the Central Dogma of molecular
biology, a topic that will be discussed in detail in the following chapters.
Proteins perform a wide variety of functions, including building and repairing tissues,

transporting molecules, and regulating the body’s metabolism. Despite the differences that
can occur in different cellular processes in organisms with different levels of complexity,
it is surprising how highly similar the processes of information transmission from DNA to
RNA and translation from mRNA are. However, the biggest differences come from gene
regulation processes. As the understanding of DNA as the blueprint of life continues to
deepen, it is necessary to broaden and open up new approaches and disciplines to better
understand its mechanisms of action and modes of evolution.

1.1.2.1 Replication
A notable feature of DNA is its ability to replicate itself, an essential process for the
survival and reproduction of all organisms on the planet. When cells divide, the DNA
is replicated to ensure that each new cell receives a complete set of genetic information
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(Kornberg 2000). The DNA replication process is extremely precise, ensuring that genetic
information is passed down faithfully from one generation to the next, and surprisingly, it is
very well conserved in all organisms, although there are some differences between prokary-
otes and eukaryotes (Bell and Dutta 2002), reflecting the differences in their organization,
complexity, and evolutionary history. For example, in prokaryotes, DNA replication occurs
in a single circular chromosome located in the cytoplasm, with a single origin of replica-
tion. Replication proceeds in both directions along the chromosome until the two replica-
tion lines meet. On the other hand, eukaryotic replication is more complex, with multiple
origins and replication occurring simultaneously on many linear chromosomes located in
the nucleus. The replicationmachinery in prokaryotes involves only a few proteins, such as
DNA polymerase, helicase, and a few single-stranded binding proteins, while in eukaryotes
it is more complex and involves a larger number of proteins, including DNA polymerases,
helicases, topoisomerases, and other related proteins. The replication process is also differ-
ent in terms of time, since prokaryotes take as little as 20minutes due to their relatively
small and less complex genomes, while eukaryotes may take several hours to replicate dur-
ing a cell division process (Bell and Dutta 2002; O’Donnell and Kuriyan 2006).
Finally, eukaryote replication differs from prokaryotes in that eukaryotes possess telom-

eres, specialized structures located at the ends of linear chromosomes that protect the
genetic material from degradation and maintain genome stability (Olovnikov 1971). The
telomeres are shortened during the process of replication, which eventually leads to cellu-
lar death or senescence (Lundblad and Szostak 2019; Ait Saada and Lambert 2021). In con-
trast, prokaryotes do not have telomeres and genome replication occurs without genome
shortening (Watson et al. 2013).

1.1.2.2 Transcription
Copying DNA into mRNA is catalyzed by the enzyme RNA polymerase, which recog-
nizes a specific sequence of nucleotides on the DNAmolecule called the promoter, located
upstreamof the coding region. In eukaryotes, transcription is initiated by the binding of sev-
eral transcription factors to the promoter sequence. TheRNApolymerase unwinds theDNA
double helix and synthesizes a new mRNA molecule complementary to one of the DNA
strands carrying the genetic information used to synthesize proteins (Alberts et al. 2002).
This complex process guarantees the expression for the proper functioning of cells and
organisms, and it is regulated by different factors, including the presence of specific tran-
scription factors and the activity of other regulatory proteins. Additionally, different types of
RNAmolecules are produced by transcription, including ribosomal RNAand transfer RNA,
which are involved in the synthesis of proteins (Lodish et al. 2000). Another notable dif-
ference between prokaryotes and eukaryotes relates to post-transcriptional modifications.
While in prokaryotes, mRNA is immediately available for translation; in eukaryotes, newly
synthesized RNA molecules undergo extensive post-transcriptional modifications, includ-
ing the addition of a 5′ cap and a poly(A) tail, as well as alternative splicing of introns (i.e.
DNA segments that get transcribed, but do not make part of the final mature mRNA). This
allows the production of multiple protein isoforms from a single gene, which enhances the
functional complexity of organisms (Black 2003; Alberts et al. 2002).
Interestingly, organisms can regulate or control protein synthesis through post-

transcriptional control; in prokaryotes, this process is relatively simple since it only involves
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the binding of regulatory proteins to the promoter region. A more complex control expres-
sion is observed in eukaryotes and involves chromatin (a complex of DNA and proteins)
remodeling, where the structure of the molecule is modified to regulate the access of tran-
scription factors and RNA polymerase to the DNA (Li et al. 2007). Chemical histone mod-
ification (acetylation, methylation, phosphorylation, and ubiquitination) with different
effects on gene expression (Liu et al. 2021) and binding of transcription factors to enhancers
and silencing sequences (Hnisz and Young 2013) may promote or inhibit the activity of a
gene and often are cell-type specific. This specificity permits accurate control of gene expres-
sion throughout the developmental process, cellular differentiation, and response to exter-
nal stimuli (Villar et al. 2015).

1.1.2.3 Translation
For translation, a structure inside the cell is made of RNA and proteins, where protein syn-
thesis (called the ribosome) binds to an mRNA molecule carrying the genetic information
that is used to synthesize a protein. The process consists of threemain steps: initiation, elon-
gation, and termination. In initiation, the ribosome identifies and attaches to the mRNA
molecule at a specific nucleotide sequence known as the start codon, which triggers the
protein synthesis process. During elongation, the ribosome reads the genetic information
encoded in the sequence of codons on the mRNAmolecule, recruiting specific amino acids
and linking them together to form a polypeptide chain (Lodish et al. 2012). This process
continues until the ribosome encounters a stop codon, which indicates the end of protein
synthesis. Once the ribosome releases the newly formed protein and the mRNA molecule,
the protein folds into a characteristic shape that allows it to perform its functions. Like repli-
cation and transcription, translation is a complex process that is strictly regulated by various
factors, such as specific enzymes and regulatory proteins (Pestova et al. 2001). For exam-
ple, translational control may involve a complex network of regulatory factors, including
RNA-binding proteins andmicroRNAs, that can either promote or inhibit protein synthesis.
Regulatory factors bind to specific targets of mRNA molecules, changing their translation
when altering the stability, localization, and access to the mRNA. In some cases, regulatory
proteins bind to the 5′ untranslated region (UTR) and 3′ UTR of mRNA molecules, which
can either promote or disrupt translation. These events are context-dependent, including
the presence of other regulatory factors (Sonenberg and Hinnebusch 2009).
Since DNA and its products resulting from transcription and translation are required for

every cellular function of an organism, DNA can be used as a molecular fingerprint that
allows for a variety of studies, such as the detection of genetic variation to determine and
track genetic diversity for population structure or phylogenetic inferences, forensic analy-
sis, paternity testing, plant breeding to identify genetic markers associated with desirable
traits, genomic studies involving the entire genome, and gene expression analysis to eval-
uate differences in expression under different variables or treatments. Significant advance-
ments in high-throughput technology have allowed the generation of impressive amounts
of data, which calls for new approaches to analyzing it and has revolutionized the way
scientists interpret gene expression and the evolution of organisms. These advancements
include RNA sequencing (RNA-seq), which allows for high-throughput sequencing of RNA
molecules and can be used to quantify gene expression levels, identify alternative splicing
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events, and detect novel transcripts (Wang et al. 2009); single-cell RNA-sequencing (scRNA-
seq), allowing the analysis of gene expression in a single-cell, providing insight into cell
heterogeneity and cell-specific gene expression patterns (Stuart et al. 2019); microarrays,
which allow for the simultaneous analysis of thousands of genes and are used to quan-
tify gene expression levels and identify differentially expressed genes (Brazma et al. 2001);
reverse transcription quantitative polymerase chain reaction (RT-qPCR), which is used to
quantify gene expression levels (Higuchi et al. 1996); NanoString, a digital gene expression
technology that uses color-coded molecular barcodes to detect and quantify gene expres-
sion levels, particularly useful in low-abundance transcripts (Geiss et al. 2008); and spatial
transcriptomics, which allows for the analysis of gene expression in situ, providing spatially
resolved information (Ståhl et al. 2016).
However, efficient analysis of this large and complex information requires novel

approaches that combine multiple disciplines and technologies for studies at the level
of organisms and their evolution. This approach integrates molecular biology, genetics,
genomics, bioinformatics, ecology, and evolutionary biology to develop amore comprehen-
sive understanding of biological systems. Computational methods are particularly useful
in analyzing the large datasets generated by genomics and other molecular biology tech-
niques. These methods help biologists and bioinformaticians identify patterns and rela-
tionships within genomic data, leading to new insights into how organisms have evolved
over time. An integrated approach that combines multiple disciplines and technologies is
increasingly necessary for a more holistic understanding of biological systems and their
evolution. Such approaches have the potential to revolutionize our understanding of biol-
ogy and are likely to have numerous applications in fields such as medicine, agriculture,
and conservation biology. By utilizing contemporary analytical methods, one can gain a
comprehensive understanding of biological processes and systems.

1.1.3 Alignment-based Methods

The sequencing era started in 1977 when the Sanger method allowed the possibility of
obtaining the sequence of small DNA fragments (Sanger et al. 1977). In the 1980s, it
became possible to sequence small genomes with the Sanger method or modifications of
it. In the early 2000s, the first draft of the human genome was launched and became a
significant milestone in a new area, “genomics,” which soon revolutionized biology with
high-throughput sequencing technologies with reduced costs and time required to obtain
the precise composition of the sequences in text form. How can such a diverse amount of
information be efficiently analyzed? What kinds of questions in biology and evolution (only
dreamed of just a few decades before) could be explored now? Computational biologists soon
started to develop tools to compare several sequences at once to make biological inferences
about groups of organisms. Most methods place sequences side by side in comparative
blocks (called alignments) of nucleotide bases of DNA or amino acids and use some crite-
rion of similarity or correspondence based on theWC-complementarity of nucleotide bases
or protein products. While these methods provide invaluable insights into the evolution
of molecules and organisms, they also present significant challenges and limitations that
became evident with their use: considerable variations in DNA sequences, particularly of
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divergent groups, genome size, appropriate thresholds for similarity criteria, and computa-
tional effort (more in Section 1.2). Thus, alignment-free approaches arose as an alternative
to alignment-based methods for exploring biological questions.
The goal of this section is to summarize the most important alignment-based approaches

and themost commonly usedmethods available. Alignment-freemethodswill then be sum-
marized in the following Section 1.1.4.
Alignment-basedmethods search for identical matches at each position in two sequences

of nucleotides or amino acids under comparison. Methods usually aim to find an align-
ment that optimizes the homology of the sequences, that is, the existence of a particular
nucleotide a, c, g, t for two or more sequences resulting from the existence of a common
ancestor. However, it is possible that such a character with the same state (e.g. a match-
ing nucleotide) has evolved independently in the two sequences. Both patterns can occur
in related species (parallelism) or distantly related species (convergence). Homology is com-
monly confused with simple similarity of sequences, e.g. some transcription factor binding
sites (Stormo 2000) are confused with regulatory motifs (Roth et al. 1998). To complicate
matters further, homologous sequences may appear to be very different (Goodman et al.
1975; Ferrier and Holland 2001).
Most algorithms incorporate gaps to consider insertions and deletions in sequences pre-

sumed to have occurred over time. There is a system that optimizes the presence of gaps for
the definition of homologous positions. However, it also penalizes them when establish-
ing blocks of correspondence between all the sequences under comparison (see Figure 1.4).
Alignments aremore straightforwardwhen the sequences have similar or identical lengths,
since gaps are not required to optimize the correspondence between character states for the
different sequences. However, when the sequences are of different lengths, various outputs
can result when changing parameters for the gap size and penalty values.
An explicit evolutionary model in the construction of alignments assumes that the

observed changes obey a specific pattern of change according to onemodel and are different
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Figure 1.4 In a typical alignment-based protocol: (a) Very similar sequences of equal length do not
require gaps, so homologous positions are easier to find. (b) Divergent sequences of different lengths
will require gaps. The definition of homologous characters can generate alternatives depending on
different parameters in the analysis or refinements of the alignment by the researcher.
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from others. For example, the rate of substitutions: transitions (interchanges of purines or
pyrimidines) or transversions (interchanges of purine for pyrimidine bases) is different, and
the nucleotide frequencies can be the same or different. Since the variables between mod-
els are different between sequences, the choice of model can influence the analyses carried
out and produce different conclusions. In the case of proteins, there are substitution matri-
ces (scores for aligning nucleotides or amino acids, for example point accepted mutation
(PAM) (Dayhoff 1978) or BLOSSUM (Henikoff and Henikoff 1992) that also require inter-
preting a specific evolutionary model that does not necessarily correspond to the real one
for all protein sequences (Dayhoff 1978).
Finally, many of the methods assume that the substitutions are made stochastically and

independently. That is, one substitution does not affect the probability that another occurs.
However, there is evidence that this is not necessarily the case since the existence of a
change (for example, transitions a−g, c− t) has a clear effect on the changes that can occur
in the opposite chain.
Although alignment-based methods have been frequently used in biology, they present

some difficulties, particularly in their application to large and highly divergent datasets.
Some of these disadvantages include:

• Homology is a key point when performing alignments. If the sequences share a com-
mon ancestor, analyzing the corresponding fragments from different organisms is
ideal. If the fragment is short and identical in all the sequences, the alignment can be
established relatively easily. However, as sequences become more divergent, signifi-
cant changes can result from evolutionary processes such as genetic recombination,
horizontal gene transfer (HGT), and gene loss or gain,making the sequences less likely
to be homologous.

• In DNA sequences with only four nucleotides, sequences can align by chance, even
if they are not related. The same can occur even in amino acid sequences, although
with lower probability. This is particularly true when the gene sequence is unknown
or when their lengths are significantly different.

• The amount of computer memory and the time required to compute the alignment
increase as the number of sequences or their length increases, as in the case of large
genomic data, because the number of possible alignments increases exponentially.
This means exhaustive searches are impractical or impossible to obtain optimal align-
ments, so that typical alignments in practice are just approximations obtained using
simplifying assumptions and heuristic approximations. This means that the conclu-
sions are uncertain, since it is highly likely that the resulting outcome will not be close
enough to the actual evolutionary trajectory.

• The alignments are based on many a priori variables (gaps, insertions, deletions,
evolutionary models), and their choice is therefore subjective and dependent on the
researcher. Since the choice of variables for analysis impacts the results, incorrect
alignments are likely to lead to conclusions that do not correspond to biological reality.

• In assumptions made for multiple alignments where insertions and deletions (indels)
are expected, it is common to specify gap penalties and gap size specifications to obtain
better scores, which again generate a subjective dependency on the researchers’ biases.
That can lead to different results depending on the initial assumptions and incorporate
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biases in the analysis, which make it difficult to determine whether they correspond
to biological reality or not.

• Models that assume a mode of evolution may not correspond to biological reality. For
example, assuming differences in mutation rates may be a simplification of the way
molecules evolve over time.

Classical alignment methods are divided into three main categories based on their
approach to establishing the alignment blocks of the sequences under study, as described
in Table 1.1.

1.1.4 A Review of Common Alignment-free Methods

The goal of this section is to summarize the most common and significant alignment-
free methods, including frequency of k-mers, genomic signatures on genomes, random-
ness and complexity of DNA sequences, chaos game representation, and machine learning
approaches.

Table 1.1 Major alignment methods.

Sub/type How it works Use

Pair alignments

Global alignments Analyzes a pair of sequences
from start to finish

Sequences of equal size and closely
related, Needleman–Wunsch algorithm
(Needleman and Wunsch 1970)

Local alignments Find the best alignment
between subsequences

Sequences of different sizes, highly
similar (Smith and Waterman 1981)

Multiple sequence
alignments
Progressive
alignments

Aligns sequences step by step,
creating a guide tree to do
progressive alignment

Useful for multiple sequences of
different sizes, ClustalW (Thompson et
al. 1994), Muscle (Edgar 2004)

Iterative alignment Performs alignments iteratively
to improve accuracy

Divergent and large sequence data
from phylogenetic diverse groups,
MAFFT (Katoh et al. 2002), T-Coffee
(Notredame et al. 2000)

Consistency method
(ProbCons)

Incorporates a measure of
consistency from pairwise
alignments, followed by
multiple alignments

Highly divergent sequences or
moderate levels of similarity, or when
high accuracy is required, ProbCons
(Do et al. 2005)

HiddenMarkov
Models (HMMs)
Model the probability
of sequences given a
particular alignment

Uses statistical methods to
represent groups of sequences
(families) and, based on
observed patterns, predict
alignments

High variability or when searching for
remote homologs in very large genome
datasets, HMMER3 (Eddy 2011).



“c01_PrintPDF” — 2025/10/1 — 14:19 — page 15 — #15

1.1 DNA: Nature, Role, and Function 15

In contrast with global alignment-based methods, alignment-free methods make com-
parisons between small fragments of the sequences (e.g. k-mers) to evaluate the similar-
ity of sequences. Alignment-free methods are used in biology and bioinformatics to assess
the similarity of biological sequences such as DNA, RNA, and proteins of organisms, with-
out the typical sequence alignments (Zielezinski et al. 2017). They are also used when the
data set is large or contains very divergent sequences and when insertions or deletions are
very frequent. While sequence-alignment methods identify similar regions, alignment-free
methods bypass that step, making it faster and more applicable to complete genomes and
metagenomics datasets, for which alignment-based methods are very challenging or mis-
leading. The methods have proved efficient, scalable, and robust, making them a viable
alternative to classical alignments. Alignment-free methods have a well-supported concep-
tual framework for linear algebra, information theory, and statistics.
The advantages of alignment-free methods can be traced back to the ways similarity

searches are performed or the kinds of assumptions of the methods.

• Homology: This key aspect of the alignment-based methods in Section 1.1.3 is not
considered in alignment-free methods. Regardless of their size, fragments come from
different sites within the genome, and there is no presumption that they belong to the
same site in the organism’s chromosome or genome.

• Speed: Alignment-free methods are generally faster and less computationally inten-
sive than traditional alignment-based methods. As the lengths of the sequences
increase, the number of possible alignments grows exponentially with conventional
approaches, and getting a nearly optimal alignment becomes very difficult. For exam-
ple, for two sequences of length n, there are (2n)!/(n!)2 different gap alignments (Lange
2002; Zielezinski et al. 2017).

• Capacity: They are helpful in the analysis of large datasets obtained from NGS data
that can be produced in relatively short periods of time. The data volume of samples
sequenced up to 2011 was estimated to be only 10 − 20% of the total DNA on Earth
(Microbiology 2011),which illustrates the complexity of the amount of data yet to come
and the need for computational power and alternative approaches to analyze that data.

• Robustness: Given the high variation in DNA sequences, the methods have been
demonstrated to be helpful with divergent sequences. They seem less sensitive to pos-
sible genome sequence arrangements (insertions and deletions), which are usually
problematic in alignment-based methods.

• Some of these methods examine physical, local interactions in both space and time
among the basic molecules of DNA, just as they occur in nature. This allows for the
extraction and inference of information as it accumulates over space and time to be
used in a predictive fashion.

Although the methods seem to be very effective, particularly in large and divergent
sequences, they also present some disadvantages:

• Alignment-free methods are based on similarity queries based on features of the
sequences and on measurements of similarity or dissimilarity, which are used to con-
struct trees. Although similar, trees may be like evolutionary trees; that is not always
the case. Additionally, once the tree is built from a distance matrix, original sequences
cannot be used as characters to trace back the evolutionary history of those sequences
along the tree.



“c01_PrintPDF” — 2025/10/1 — 14:19 — page 16 — #16

16 1 What Is Biology?

• Themethod analyzes global patterns (k-mers), which can cause localized variations to
be ignored. Additionally, the size of the k-mers can generate biases. If k is very small,
the methodmay not capture that variation, but if it is very large, it may overemphasize
small differences.

Two major methods exist in alignment-free approaches (Vinga and Almeida 2003). First,
word-based methods analyze frequencies of subsequences of different lengths, usually
defined by the researcher. Second, information-theoretic methods measure the informa-
tional content between full-length sequences (Zielezinski et al. 2017), as shown in Table 1.2.

1.1.4.1 Word-based Methods
Instead of comparisons based on typical residue correspondence when comparing two
sequences, like aa, gc, cc, tt in complete segments of DNA, the sequence representation of
alignment-free approaches is based on the comparison of sequences with small fragments
(k-mers) of different lengths. For example, the sequence attgc can be represented as k-mers
of length k = 2: at, tt, tg, gc, or as 3-mers: att, ttg, tgc. The shorter the k, the more likely it is
that the k-mer will appear randomly in the sequence and longer k-mers should be used for
very similar sequences (Zielezinski et al. 2017). Long k-mers (in the range k = 2 − 6) are

Table 1.2 Major alignment-free methods.

Method Criterion Distance Software

Word count Frequency of k-mers of
different lengths K

Euclidean, Manhattan,
Pearson correlation
coefficient

KAT (Mapleson et al.
2017), JellyFish
(Marcais and Kingsford
2011), Kraken (Wood
and Salzberg 2014).

Information
content

The amount of
information shared
between biological
sequences

Lempel-Ziv complexity
estimation (Lempel and
Ziv 1976)

(Liu et al. 2012)

Entropy “Uncommon words” Shannon Entropy H,
Kullback–Leibler
divergence

FSC-Q (Haubold et al.
2015)

Chaos game
representation

Biological sequences are
transformed into unique
fractal patterns to be
compared in terms of
similarity.

Euclidean, Manhattan,
Pearson correlation

CHAOS/DIALIGN
(Brudno et al. 2004)

Iterative maps Mathematical
transformations are
applied to biological
sequences.

Euclidean, Hausdorff Matlab and Python
scripts

Graphical
representation

Transformations of
sequences to plots
representing features
such as GC content,
k-mer frequency, others

Manhattan or other
metrics of similarity in
graphical
representations

GraphDNA (Thomas
et al. 2007), MatGAT
(Campanella et al. 2003)
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Figure 1.5 Word-based methods used in the alignment-free approach.

useful for a wide range of pylogenetic divergences (Chan et al. 2014), and up to 25-mers for
very similar sequences as isolate comparisons of bacterial species (Bernard et al. 2019).
Several steps are included in the process, as shown in Figure 1.5.

• Original sequences to compare, seq1 and seq2, are broken up into different fragments
of size k = 3. There will be unique and shared fragments (in squares).

• Unique and different fragments are joined together; there will be unique sequences to
each original sequence as well as fragments common to both.

• Each sequence is transformed into a vector (array of numbers). Word count consists of
determining the presence or absence of each fragment. Zero times when a sequence
is unique to one of the query sequences, 1 when it is present one time, 2 when it is
present two times, and so forth. This step will allow distance determination.

• Some distance is calculated, e.g. the ordinary Euclidean distance, but other met-
rics include Hamming and the Jaccard Index (Tang and Gaut 2010). The higher
the number, the more dissimilar the sequences, whereas identical sequences will be
at a distance 0, as should be the case for any metric. (The concept of distance is
defined precisely in Section 1.2.)

1.1.4.2 Information Content
These methods evaluate the informational content of the sequences at full length by recog-
nizing and computing the amount of information shared between biological sequences. The
method compares two sequences at a time; if they are identical, the information content is
0, whereas the content increases as differences between the sequences increase. Different
measurements evaluate the distance among sequences based on the information content.
For example, when comparing a pair of sequences, it is possible to assess the number of
different subsequences in each one.
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Table 1.3 Major results with alignment-free approaches.

Application Advances Examples and references

Phylogenetics Simulated data (nucleotides and amino
acids) show accuracy and robustness in
different empirical sets.

Chan et al. 2014

Genomic analysis Phylogenetic analyses in hierarchical
(vertical) and reticulate (lateral) aspects
of genome evolution.

Bernard et al. 2019

Metagenomics In simulated microbial genomes, the
sensitivity of methods is evaluated under
lateral gene transfer and genome
rearrangement scenarios.

Bernard et al. 2016

Virus evolution New method that avoids the computational
complexity of multiple alignments. Applied
to several viruses, such as SARS-CoV-2,
Dengue virus, Hepatitis B virus, and human
rhinovirus, with similar results to those
obtained by alignment-based methods.

He et al. 2021

1.1.4.3 Entropy
Ameasure of uncertainty can be defined without resorting to thermodynamics. The Shan-
non entropy index was introduced by Shannon (1948) to quantify the uncertainty (entropy)
in the values of an RV (see Section 1.2). Other authors have developed ways to measure the
entropy to analyze sequences based on the frequency of symbols a, c, g, t’s.

1.1.5 Major Results by Alignment-free Methods

The goal of this section is to summarize the major results obtained with alignment-free
methods, including large-scale genomic comparisons, microbial diversity and metage-
nomics, and comparative genomics and phylogenetics.
Since alignment-free approaches allow comparingwhole genomes,metagenomes, or very

large datasets, their applications are versatile, and each identifies some type of similarity
to address specific questions in biology. Applications include identifying similarities and
differences among organisms, inferring evolutionary relationships, and identifying evolu-
tionary patterns, as summarized in Table 1.3.

• A common approach is to choose a distance metric to compare sequences of organ-
isms to infer phylogenetic relationships between them (e.g. which one came first in the
course of evolution). The results can be comparedwith those obtainedwith alignment-
based methods. There is also the possibility of generating phylogenies based on whole
genomes.

• In areas such as epidemiology and genomics, pathogen outbreaks can be tracked by
comparing their sequences, which is very useful for understanding the dynamics of
transmission and possible evolutionary changes in pathogens.
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• Epidemiology and Genomics: Pathogen outbreaks can be tracked by comparing
their sequences. This is very useful for understanding the dynamics of transmission
and possible evolutionary changes of pathogens as they invade the host and respond
to its immune system.

• The field ofmetagenomics dealswith interactions among different species of organisms
in a range of biome. Samples contain a mix of different types of organisms (viruses,
bacteria, and fungi). Their analysis with alignment-freemethods reduces the problems
associated with the lack of homology typically found in their alignments.

• A recent application consists of analyzing genomic signatures to detect deviations from
genomic content that may indicate the presence of (recombination of) foreign DNA,
typical of HGTs from other organisms.

• Identification of HGT and detection of recombination.

1.2 Hybridization Affinity

The alignment-based methods described in Section 1.1 leave several questions unre-
solved when addressing fundamental problems in biology. For example, many of the
alignment-basedmethods are effective because of the use of statistical tools thatmake sense
at the level of populations of organisms and establish correlation effects between DNA and
the macro-observables (e.g. phylogenetic trees, defined precisely in Chapter 6). However,
they leave a logical gap in bridging the connection between them (e.g. what are the physi-
cal, chemical, and/or environmental reasons why they happened so?) Furthermore, align-
ments impose a heavy computational burden that increases proportionally and jointly with
the number of organisms involved and the length of the sequences used as proxies. On
the other hand, alignment-free methods based on physical chemistry have the potential to
address this gap because they are usually based on local interactions between molecules
that reflect the physical nature of underlying biological processes; just as important, they
also provide more causal chains of interaction connecting them to enable prediction at the
level of individual organisms.
The goal of this section is to address the same problems, perhaps in more effective ways,

using alignment-freemethods, or where alignments prove impossible to use, either because
of practical issues of efficiency or because of more principled issues.

1.2.1 Models of Gibbs Energy Landscapes

A predictive science requires precise definitions of the concepts involved in the predictions.
For further data analyses in later chapters, the goal of this section is to provide more pre-
cise and quantitative definitions of models of DNAmolecules and their representations on
digital computers than are commonly given in biology. Of course, they are abstractions of
the actual chemical molecules described in Section 9.1.1 that may appear to be gross over-
simplifications to a biologist’s mind, but they will suffice to deliver some new, interesting
predictions in later sections that bear reasonable accuracy.
The goal of this section is to describe the physical chemistry of DNA molecule interac-

tions that enable its functional properties in two fundamental ways. First, as a repository of
basic information about the physical expression of an organism (phenotype), and second,
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as themechanism for its interaction with other DNAmolecules to enable integration of this
information across space and time to enable biological function.
As mentioned above, the fundamental physical quantity associated with DNA is Gibbs

energy (Holde 2006). The simplest estimates of the Gibbs energy are given in the form
of melting temperatures as averages of the energy (heat) that must be supplied to a pop-
ulation of duplex molecules of the same composition (sequence) in order to dissociate/
denature/melt (break the H-bonds) about 50% of the molecules. An estimate is given by
Wetmur (1999, 1976).

Tm = ΔH∘

ΔS∘ + R ln([ct]/4)
,

where ΔH∘ is the change in enthalpy, ΔS∘ is the change in entropy, R is a gas constant in
the entropy model, and [ct] is the molar concentration. Single-stranded molecules absorb
UV radiation, and therefore, as the temperature increases, increased absorbance with melt-
ing can be detected in a photograph by gel electrophoresis (Holde 2006). For a biolo-
gist, the obvious criteria to decide hybridization are usually related to the GC content of
the sequences, since it is a good indicator of the melting temperature of short oligonu-
cleotides (Wetmur 1999). These estimates are not very useful when it comes to predicting
the hybridization behavior of two specific sequences among a mixture of many different
molecules of very different compositions.
The major factors intervening in the calculation of Gibbs energies of two specific

sequences x and y are their actual compositions (i.e. sequences) and the Gibbs energies
associated with various frameshifts (an example can be seen in Figure 1.6) to capture the
optimization done by the actual physical process underlying their hybridization, according
to the Second Law of Thermodynamics. Assuming that the physical factors in the environ-
ment (e.g. solvent in a test tube) are chosen appropriately (e.g. human body temperature
37 ∘C), a model can simply use experimental measurements of the various combinations of
facing nucleotides in a given alignment and combine them into a total for the Gibbs energy.
The simplest model, the NNM is a linear model that just adds up those pairwise energies
from a table of pre-determined (usually experimental) estimates for all possibilities. The
actual Gibbs energy for the pair is taken to be the minimum of all estimates over all possible
frameshifts. The model produces reasonable estimates when there is no secondary struc-
ture in the strands x and y, for example, it rarely appears in short oligonucleotides (of length
up to 60-meters) (SantaLucia 1998). More realistic approaches account for stacking effects,
where the energies for a pair of facing nucleotide in a frameshift depend on the neighbor-
ing pairs, for example two pairs of consecutive nucleotides, or nucleotides within a given
radius (the staggered-zipper model).
Even staggered-zipper models are insufficient to obtain a good idea of the range of the

likelihood of hybridization across all possible pairs of DNA strands x and y, even of the
same size, simply because the number of combinations grows at a high exponential rate to
apply these methods pairwise exhaustively. To do so, more theoretical models of hybridiza-
tion that afford analyses of the Gibbs energy landscapes have recently become available.
At a fundamental level, this problem can be construed as a standard molecular problem in
conventional physical chemistry. However, the solutions can only be arrived at by a more
abstract definition of the concept of DNA strands and their entire ensemble, at least for
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Figure 1.6 The h-measure between any pair of pmers x and y chooses the frameshift with most WC-
complementary (min of WC-nonmatching) pairs of facing nucleotides in the h-measure s of the pairs
x, y and x, y′ (lone nucleotides are considered mismatches) and the h-distance chooses the minimum
of the two. The value of the h-distance varies between 0 and m = |x| = |y|, their length. The smaller
the h-distance, the more likely the oligos are to hybridize, e.g. |xy| = 0 means the oligos are
perfectly complementary or identical (like x = aaa/ttt and y = ccc/ggg), whereas |xy| = m means the
oligos at the maximum h-distance are very unlikely to hybridize (like x = aaa/ccc and y = ccc/ttt .)

strands of a given length, affording the computational approaches described next. Their
analysis leads to interesting new views of hidden structures in the world of DNA and RNA
oligonucleotides.

Definition 1.1 DNA sequences and spaces (Garzon et al. 1997) A DNA sequence x
is a string of symbols from the DNA alphabet Σ = {a, c, g, t} of length a positive integer
m > 0. They will also be referred to as polymers of lengthm, or just asm-mers. The string
x′ obtained after first taking the reverse of x (i.e. xr) and replacing every a (c) by t (g, respec-
tively) and vice versa, i.e. x′ = (xr)c is theWC complement of x. An (unordered) pair of two
WC complementary pmers sequences {x,WC(x)} (simply denoted x/x′, or just x, the lexico-
graphically first element in the pair) will be referred to as a pmer (or |x|-pmer). The set of
all suchm-pmers will be referred to as the DNA space Dm of lengthm > 1.

IfWC(x) = x′ = x, xwill be referred to as aWC-palindrome. If so, the corresponding pmer
is really a set with a single strand. WC-palindromes will be excluded from consideration
throughout for reasons that will become apparent below.

1.2.2 Deep Structure of DNA

This section describes computationalmetric models of hybridization between DNA strands
of a fixed length that will reveal some hidden deep structure of DNA. This structure will
be used and leveraged in the next section to obtain alignment-free methods to perform
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exponential dimensionality reduction of arbitrary long DNA sequences to low-dimensional
feature vectors, which in turn will make possible genomic analysis using machine learn-
ing in the following chapters. A metric model is one satisfying three properties (reflexivity,
symmetry, and the triangle inequality) that have been identified in mathematics and the
physical sciences to be essential to our abstractions of ordinary space to enable us to navi-
gate the ordinary world with powerful intuitions (e.g. standard Euclidean geometry, calcu-
lus, and so forth).

Definition 1.2 Distance function (Garzon et al. 1997) An assignment of distance
values h(x, y) to every pair of points x, y in a setDm is a distance function (or just ametric) if
and only if every triple x, y, z of elements in Dm satisfies

• (Reflexive) h(x, y)| = 0 if and only if x = y
• (Symmetry – distance is adirectional) h(x, y) = h( y, x)
• (Triangle Inequality – a detour increases the distance) h(x, z)| ≤ h(x, y)| + h( y, z)| .

The natural phenomenon of Gibbs energy and its current biochemical models, in partic-
ular the NNM, lack all the three properties of ametric for a good approximation that lends
itself to deeper analysis andmakes it very difficult to navigate the landscapes, for example to
select a good set of probes to capture information from DNA sequences by hybridization in
a microarray in a reproducible way. The question then arises: Is it possible to find a system-
atic metric approximation of the Gibbs energy of hybridization? Perhaps surprisingly, useful
insights into the structure of Gibbs energy landscapes of DNA duplex formation have been
revealed through such an approximation for DNA oligonucleotides of the same length, as
discussed next.
A natural first step would be to consider familiar metric models in Shannon’s informa-

tion theory of error-correcting codes, for example the Hamming distance function between
binary strings of a fixed length given by the number of mismatches (pairs 0−1 or 1−0). The
Hamming distance between any two sequences counts, in a perfect alignment, the num-
ber of positions where the facing characters do not match. For a more appropriate model of
hybridization, this concept must be modified so that matching now refers to WC comple-
mentary pairs, i.e. only a−t’s or c−g’s. Despite this is a step in the right direction, Hamming
distance between two DNA sequences remains too crude as an estimate of the affinity of
strands for hybridization, simply because it excludes the possibility of two strands hybridiz-
ing in shifted alignments, something occurring much more frequently with actual DNA.
Hence, an alternative model was introduced in Garzon et al. (1997) and Phan and Garzon
(2009), the hybridization distance, or just h-distance. This h-distance turns out to be a rea-
sonable choice for an approximation of the Gibbs Energy because it satisfies metric proper-
ties that biochemical Gibbs energy models do not; more effectively, because hybridization
decisionsmadewhen the h-distance falls below an appropriately chosen threshold 𝜏 agree with
those given by the NNM of the Gibbs Energy (close to the actual decisions made by the real
oligomers of length below 60 or so) about 80% of the time (Garzon and Bobba 2012; Garzon
et al. 2009).
The h-distance reveals a natural geometric representation of sequences in DNA spaces of

an arbitrary length in such a way that the physical distance between any two points in the
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Figure 1.7 The Gibbs energies landscapes of the of DNA hybridization are not random; they
exhibit interesting geometric and mathematical properties, as evidenced by the h-distance
approximation in Dm for (a) m = 3; and (b) m ≥ 4. The pmers are geometrically arranged into two
isometric groups (the northern and southern hemispheres, with a North pole of a/t’s, a South pole
of c/g’s and an equator E ), reminiscent of the solar planet Saturn, but with equatorial rings not only
around the equator, but alternate parallels as well. (b). This organization scales up essentially
unaltered (except perhaps with more rings around more parallels) for spaces of larger length m.
(Although the embeddings are not isometric, the distance in ordinary three-dimensional (3D)
Euclidean space between the locations of m-pmers is roughly proportional to their actual
h-distance (hybridization affinity), in the DNA spaces Dm (see Figure 1.6). WC-palindromes have
been excluded to avoid cross(self)-hybridization.

space is indicative of their hybridization affinity. For example, a pair of WC complemen-
tary oligonucleotides (e.g. aaa and ttt for oligonucleotides of length 3) collapse into a single
point (the pair aaa/ttt and so are at distance 0; likewise for acg/cgt). Such pairs are referred
to as paired mers, or simply pmers. Moreover, this distance allows the study of hybridiza-
tion landscapes with the geometric and spatial analogies that people use so easily to
facilitate reasoning and ordinary life in the real world, as described in Section 1.2. For exam-
ple, the 3-pmers aaa/ttt (ccc/ggg) are located as a sort of north N (south S, respectively)
pole in the DNA space of 3-pmers, as shown in Figure 1.7a. These concepts afford a good
model of the complex Gibbs energy landscapes of DNA hybridization that are fundamental
to genomics and physiology in living organisms.
The precise definition of the h-distance follows the biochemistry of DNA much more

closely than the Hamming distance, as shown in its operational definition 1.2 given in
Figure 1.6. This h-distance is laborious to calculate manually, but can be computed for arbi-
trary pmers by a short computer program very quickly.

1.2.3 New Alignment-free Methods from Deep Structure

In this section, the deep structure described in Section 1.2.2 is used to introduce novel
alignment-free methods to address new important biological problems in the following
chapters.
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1.2.3.1 Noncrosshybridizing Bases
The deep structure makes possible the selection of universal biomarkers and genomic sig-
natures of long DNA sequences (such as genes and even arbitrary biomarkers and genomes
used in biology) that will make possible genomic analyses of very long DNA sequences. This
reduction is based on the pointwise hybridization pattern exhibited by a long sequence or a
set of DNA sequences to a common/universal judiciously selected set of DNA oligonucleotide
probes located strategically on the full hybridization landscape of a DNA space Dm.
The standard approach in biology to extracting information from DNA sequences is a

microarray (Schena 2003). They are planar substrates made of glass, mica, plastic, or sil-
icon. cDNA strands (typically WC-complements of full genes or genome fragments) are
attached to them to capture specific biosamples (usually referred to as probes) collected
from an organism by hybridization binding. Since the 1990s, microarrays have been refined
to enable analysis of genomic andmetabolomic information in applications to various fields
such as biology, medicine, and health.
However, microarrays have some serious drawbacks. First, analyses of their readouts

give results that are hardly reproducible because of the high uncertainty of hybridization of
probes to targets, since the sequences of the genes attached to them (probes) are unknown a
priori. Second, the targets may cross-hybridize because they are not affixed to the chip suffi-
ciently far apart, while the probes are floating in solution. No constraints are implemented
in these chips tominimize cross-hybridization between targets (Garzon andMainali 2017a).
A second disadvantage is that they might miss target strands if they do not hybridize with
any probe on the microarray and thus miss signals that could yield useful information.
With the recent advances in NGS, this problem can be partially solved if genes are substi-
tuted by DNA fragments coding for single proteins. Currently, a number of NGS platforms
using different sequencing technologies are available. These platforms perform sequencing
of millions of small fragments of DNA in parallel. Some bioinformatic analyses join these
fragments by mapping the individual reads to the human reference genome (Behjati and
Tarpey 2013). However, analyzing the sequences generated using these platforms remains
a big challenge due to the uncertainty of hybridization.
An alternative method has been proposed by Garzon and Mainali (2017a) that leverages

the intuitive and geometric understanding of the full Gibbs energy landscapes for m-mers
of a given length m afforded by its deep structure (as described in Section 1.2.2) to obtain
designs for a next-generation microarray (NGMs), or DNA chips to address both limitations
in conventional microarrays, as described next. In the DNA spaceDm, reactions conditions
can be modeled by a hybridization threshold 𝜏 so that two m-mers hybridize if and only
if their h-distance |xy| < 𝜏. One can use it as a set of m-mer probes B for a microarray
design, a set of targets that donot cross-hybridize, i.e. they donot hybridizewith one another
under stringency 𝜏, which amounts to a prudent separating distance in DNA space Dm. In
addition, one might position them strategically enough to select them so that every other
randomm-mer does hybridize to at least one of the probes in B, i.e. they capture the full set of
m-mers by hybridization within stringency 𝜏. Such a set of probes (if one is lucky enough to
find one) will be referred to as a noncross-hybridizing (nxh) basis of the DNA spaceDm of all
m-pmers. One might have noticed that these pmers will be referred to as probes (opposite
to the standard use in biology, where they are referred to as targets), while the subject of
analysis (e.g. a gene, genome fragment, or possibly a full genome) will be referred to as a
target.
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Table 1.4 Centroidal nxh bases for larger DNA spaces.

Basis ID 𝛕 Length Size p Entropy Probe h-census

3mE4b 1.1 3 4 0.45 []

4mP3 2.1 4 3 0 [0 120 0 0]

5miC3Mg 3.1 5 3 0.34 [0 479 33]

7miC4Sa 4.1 7 4 0.17 [4 7997 191]

7miC4Sb 4.1 7 4 0.15 [4 8024 164]

8mP10 4.1 8 10 0.57 []

An nxh basis could be used to achieve an exponential reduction of the dimension of
very long DNA sequences to short feature vectors, the genomic signatures described next, in
hopes that they will enable the extraction of more reliable and relevant information about
long DNA sequences based on the knowledge of Gibbs energy landscapes. This expectation
is justified based on the principled design that hybridization is a local process based on inter-
actions of short oligonucleotides DNA sequences and that the Gibbs energy is a fundamental
biochemical factor in their physical process of hybridization. Some such designs are readily
available for short m-mers, but they are under further development. (How to obtain such
nxh bases is a problem that will be discussed below after establishing the soundness of this
approach. Readers with some knowledge of linear algebra in mathematics will not miss the
resemblance between nxh basis and the concept of basis in a mathematical vector space
that inspired the concept of nxh basis, with hybridization playing the role of the concept of
linear combination of vectors in Euclidean spaces.)
Table 1.4 shows a number of such nxh bases alongwith the quantification of their quality.

These bases were obtained using a judicious selection among the centroids of the parallels
inDm on the “earth” of DNA spaces (see Figure 1.7), a natural idea afforded by our physical
intuition in ordinary Euclidean spaces.
Armed with just these few nxh bases, one can extract information as feature vectors, or

genomic signatures, from target genomic sequences, as described next.

1.2.3.2 Genomic Signatures

Definition 1.3 Genomic signature (Garzon et al. 1997) For a DNA space Dm, a
nxh basis B with p probes, a h-distance threshold 𝜏 > 0, the genomic signature of a DNA
sequence x is obtained by as follows:

• Shred x to nonoverlapping fragments of size m; (any shorter leftover shreds are
ignored)

• For each probe zi ∈ B, compute the total number of shreds in x that hybridizes with zi
for the given threshold 𝜏

• Normalize the pD vector thus obtained using the partition function (i.e. dividing each
component by the total number of shreds)
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Genomic signatures can be readily computed for a given DNA sequence by a short com-
puter program (e.g. in the programming language Python). This affinity can be expressed as
an pD vector, where p is the number of probes in the basis B. The simplest example of such a
basis (as simplistic as it may sound) is given bym = 1 in DNA spaceD1 = {a/t, c/g}with two
1-pmers and the nxh polar basis 1mP1 = a/t, g/c. With 0 < 𝜏 < 1, the genomic signature
of a long DNA sequence x is then a pair of numbers (xa/t, xc/g) counting the g, c’s in x that
hybridize to probes a/t and c/g, respectively, (at h-distance less than 𝜏 < 1) divided by the
number of nucleotides in x, i.e. the familiar AT- and GC-contents of sequence x. For longer
m and larger bases B of size p (like 3mE4b2, 4mP3, or 8mP10 above), the signatures can thus
be interpreted as generalized AT/GC indices capturing hybridization patterns in a sequence
x through a strategically located array of sensors given by copies of the probes in basis B.
The workflow to obtain genomic signatures (in vitro or in silico) is illustrated in Figure 1.8.
Two important questions emerge. Do these genomic signatures capture any significant bio-
logical information? Are these signatures of any practical use to address biological problems?
The following chapters will provide a resounding positive answer to this question. To begin
with, one can be reassured that the design of these DNA chips relies on solid principles of
physical chemistry (Gibbs energies) and on the results of quantitative assessments of the
quality of an nxh basis to ensure they really resolve the two basic problems with conven-
tional microarrays mentioned above.
There are two kinds of assessments of the quality of nxh bases. The first one is a principled

inherent metric where the quality of the information extracted by these bases is quantified
regardless of their application. The second one is by quantifying the quality of solutionmod-
els (by standard quantitative metrics discussed below) for problems arising in applications
based on the features extracted by nxh bases from genomic sequences.
The first metric quantifies the uncertainty of the hybridization process of a probe onto

the basis to address the issue of unreproducibility of microarray readouts. It requires the

Sonicator
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Raw

Normalize

53 543 1903

0.0212 0.2173 0.7615

Normalized
genomic signature

(a) (b) (c) (d)

Figure 1.8 The workflow to compute a genomic signature on an nxh basis B consists of four steps:
(a) Pass the DNA x through a sonicator (or computer program in silico to shred it into fragments
(shreds) of about the same length as the probes in B; (b) Pour the shreds onto the DNA chip
(next-generation microarray with sufficiently many copies of the probes and their
WC-complements, properly separated on different spots to avoid cross-hybridization) and allow
time for hybridization of the shreds to the probes; (c) take a census of the number xi of
hybridization to each probe i on the nxh chip (using either a gel in vitro or a computer program); (d)
Normalize the raw counts to get the genomic signature vector of x with respect to the basis B.
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standard concepts from probability theory, namely, a sample space Ω (the set of all possi-
ble outcomes of a random experiment, here drawing at random am-pmer from space Dm)
(as a proxy for a gene fragment, for example), a (discrete) probability distribution on it, RVs
(observations on all possible outcomes in Ω), and the expected value of a RV. (For back-
ground about machine learning concepts, see Appendix 10.2). The metric is the (Shannon)
entropy quantifying the degree of uncertainty of the random process (Shannon 1948). To
calculate it, it is necessary to choose an appropriate RV. The most appropriate choice counts
the number of probes in B that a random pmer hybridizes to under the given stringency 𝜏.

Definition 1.4 Shannon entropy Let X be RV taking on a finite number of values
x1, x2,⋯ , xn with corresponding probabilities P[X = xi] . The Shannon entropy H(X) of X is
the average uncertainty in the RV X taking any specific value given by

H(X) = −ΣiP(X = xi) log(P(X = xi)).

An ideal nxh basis (like B=4mP3 at stringency 𝜏 = 2.1, obtained through an exhaustive
search ofD4 and shown in Table 1.4) will produce a noise-free genomic signature (Mainali
et al. 2021) with H(B) = 0, i.e. there is no uncertainty for hybridization of any pmer to a
probe. Table 1.4 shows the proposed new nxh bases having entropies less than 0.5. As the
value of m increases, the value of the entropy may come closer to 0. Thus, as the length of
the probes grows, the quantity of information extracted also increases for these nxh bases
obtained by the centroid methods (Garzon and Mainali 2017a).
Finally, one can also perform a control for the quality of the process to obtain them, i.e.

how nxh they are as bases (in terms of separation and coverage of Dn by all the balls of
radius 𝜏 centered at them). For 6-pmers, one can choose a random set of pmers containing
the same number and the length of pmers as in the nxh bases in Table 1.4, then repeat
the same procedure 16 times for 6 and 7-pmers. The test is the comparison of their quality
metrics (the average of the expected number of hybridizations to the given probes and their
entropies) to the nxh basis. One can also perform two t-tests, each with a null hypothesis
that the mean entropy of the sample is the same as the entropy of our corresponding nxh
basis. In a typical run, for 𝛼 = 0.05 and one-tailed test, the critical value was 1.746. The
computed t-values for two bases (11.748 for 7miC4Sb, 11.475 for 7miC4Sa, and 14.159 for
6miC4Sa) are greater than the critical value. Thus, the null hypotheses were rejected, i.e.
the quality of the information extracted by these bases should be statistically significantly
better than that by a random set of pmers.
Now, for these methods to be useful, one must have in hand some high-quality nxh

bases. Random selection of probes is quite unlikely to produce useful such. In fact, it has
been shown that the problem of finding nxh’s is essentially reduced to a popular and well-
researched problem in geometry, a sphere-packing problem (Garzon 2014; Garzon and
Bobba 2012), already faced by Newton in the early 1700s when trying to solve the “sphere-
kissing” gravitational problem of determining themaximumnumber of spheres of the same
radius that can be placed in a kissing position in ordinary 3D space. The problem remains
yet unresolved for higher-dimensional spaces today, and even for proving the optimality in
two-dimensional space (the ordinaryEuclideanplane) of arbitrary regular packings. (It took
a genius of the caliber of Carl F. Gauss to give such a proof for the well-known hexagonal
tesselation in the 1820s). In discrete spaces such as DNA spaces, the problem can be formu-
lated precisely as a computational problem (the CodeWord Design problem – CWD), but it
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has been established that obtaining nxh bases is very difficult in general because CWD has
been proven to belong to a class of computational problems (NP-complete) that are very
likely to be intractable by efficient algorithms (Garzon 2014; Phan andGarzon 2009; Garzon
and Bobba 2012). Fortunately, the deep structural properties of DNA spaces (as discussed
in Section 1.2.2) afford a method to obtain nxh bases of good enough quality (though not
perfect) in some particular cases (for short probes), as discussed next.

1.2.3.3 Pmeric Signatures
Another family of Genomic Information Systems (GenISs) can be obtained by using a vari-
ant of genomic signatures called pmeric (pmc) signatures to extract information from DNA
sequences. The coordinate systems, along with the means to assess their qualities, are
described next. They attempt to emulate polar coordinates in DNA spaces, for which an
origin (pole) is needed, namely the concept of a centroid of DNA spaces enabled by the
h-metric structure. Pmeric coordinates will be alternative patterns of hybridization affinity
to the set of all the h-centroids of a DNA spaces Dm.
Since DNA spaces have a geometric structure determined by the h-distancemetric, a ques-

tion of particular interest to a biologist arises:What pmer(or pmers) could claim the title of
“origin” or “center” of Dm? In physics, there is the concept of the center of gravity, which is
unique for a given mass distribution, such as the whole Earth. This would be a point that
balances out the gravitational forces of all other point masses in the distribution. It is pos-
sible to give such a principled definition for DNA spaces by analogy, as shown next. This is
another example of how a metric structure makes the analysis of DNA using known stan-
dard methods in physics possible, informative, and even easy.
An h-centroid of a DNA space Dm would be a point that is, on average, closest to every

other pmer in the space than any other, in h-distance of course. Again, this average can be
computed with a short computer program (perhaps in Python) for small values of m and
then one can take them-pmers that minimize the average. As it turns out, due to the sym-
metries of Dm, there is no unique h-centroid minimizing this average distance, unlike on
Earth, where all objects are attracted toward a unique center of mass due to gravitational
forces. The h-centroids (up to D8) have been precomputed (not shown) by a brute-force
search of the entire DNA spaceDm. As mentioned earlier, as the length of pmers increases,
the size of the space explodes combinatorially. Thus, it is impossible to perform such a
search beyond 8-pmers, even on a high-performance computer (HPC).
To obtain a genomic signature for a longer DNA sequence x (such as a biomarker like

COI or COII serving as a proxy for an organism), a more sophisticated analysis is required.
Shredding the sequence into fragments of size m will produce a “mass” distribution in a
Euclidean spaces, where an ordinary centroid can then be computed as a pmeric signature.
A number of interesting examples of genomic signatures are illustrated in Figure 1.8 and
their distribution in Euclidean spaces in Figures 3.6–3.10 in Chapter 3.
Following the lead of genomic signatures, a Python script can be used to shred a long

DNA sequence x into uniform length pmers of sizem. Each pmer inDm can be viewed as a
point with certain weights given by its h-distances from all the h-centroids ofDm. However,
the number of occurrences of these pmers in genomic sequences of different organisms are
likely to be different. Thus, placing masses at a pmer shred of size equal to the ratio of the
total number of times the pmer occurs in x to the total number ofm-pmers shreds occurring



“c01_PrintPDF” — 2025/10/1 — 14:19 — page 29 — #29

1.2 Hybridization Affinity 29

in x will distinguish several organisms based on these vectors. These vectors will also be
used as signatures for the respective organisms.

Definition 1.5 pmeric signature (Garzon andMainali 2017b) For a DNA spaceDm
with k-centroids and a DNA sequence x of length n > m, the kD pmeric signature of x is a
mD numeric vector obtained as follows:

• Shred x into nonoverlapping fragments of size m (any shorter leftover shreds are
ignored)

• For each centroid zi ∈Dm and unique shred xj, compute yij = wj|zixj|, wherewj is the
fraction of the number of occurrences of xj divided by the total number of shreds in x.

• The ith component of the pmeric signature of x is given by the average of the yij across
all shreds xj.

Many examples of pmeric signatures can be found in the data shown in Chapter 3.
The same questions arise about pmeric signatures as they did above for genomic sig-

natures. Why would these signatures be of any use to solve biological problems?, one might
ask. Again, one could try to argue principled reasons for their effectiveness. However, an
entropic quality assessment of pmeric coordinates is not possible because there is more
than one centroid, and they are very close to each other in the expanse of the entireDm. An
alternative would be to argue that pmeric coordinates determine a sequence x uniquely, at
least where x is a pmer. However, this is not true even in D3, where two different 3-pmers
exist that have identical pmeric coordinates. Thus, the question can only be resolved by try-
ing the coordinate system to address specific problems. In fact, it will turn out that they are
indeed very useful, as illustrated by a number of applications in Chapters 5 and 9. (Also,
see Problems at the end of this chapter.)

1.2.3.4 Genomic Information Systems
Anumber of successful applications of just these two basic concepts of genomic and pmeric
signatures in the following chapters naturally lead to the idea of a platform for computa-
tional solutions in biology. The idea ofGenIS as an integrated software platform comprising
a coordinate system (e.g. genomic or pmeric) was suggested by Garzon and Mainali (2017)
and (Garraffoni 2019) to transform an arbitrary DNA sequence into a numeric vector and
a library of conventional statistical or data science/machine learning models designed to
solve biological problems using these coordinates as input features. These GenIS serves for
the biome the role that an analogousGeographic Positioning Systemdoes to determine loca-
tions (e.g. cell phones) on planet Earth. Methods developed for computer networks (such
as the internet and wireless communication) have enabled billions of people to communi-
cate, e.g. using cell phones. This requires, in particular, the ability of the systems to deter-
mine a location anywhere on the planet so as to quickly establish paths to send messages
through. That is similar to what biological organisms do (e.g. living cells and brains), where
physical proximity, obstruction, and location amount to hard anchoring constraints that are
exploited for biological function, such as cell membranes, organs, and organisms. Without
them, biological reality, in particular organs and living organisms as they occur in life today,
would be impossible. A GenIS offers a similar system for biological information processing
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with planet Earth being replaced by the entire biome on it. The concept and development
of these systems was initiated in Garzon and Mainali (2017) and has been given a number
of applications in Mainali et al. (2020a,b) and Garzon et al. (2022). The following chapters
will illustrate their wide applicability in biology, medicine, health, and even in other areas
outside biology (e.g. image processing).

1.3 Summary

Chapter 1 has refocused the study of life to place a larger emphasis on its physical chem-
istry as a potential source of methods and tools to address major problems in biology. It
has introduced novel tools from geometry and mathematics that enable deeper analyses
of the Gibbs free-energy landscapes of hybridization, fundamental to the biochemistry of
life. These models have unveiled a deep structure in these landscapes that has led to NGM
designs (nxh bases and DNA chips) and will provide a handy tool to tackle key problems in
biology (e.g. in genomics and evolution) through amore analytical approach. This approach
will enable more predictive solutions to problems in biology in the coming chapters.

Problems

1.1 The Central Dogma (DNA-RNA-protein) is a key (though oversimplified) founda-
tional element in molecular biology. The transcription and translation processes do
not occur with 100% fidelity, so many questions remain unanswered in full.
• What is the specific role and relative contribution of gene expression to epigenetic
changes, and how precisely do these nongenetic features affect gene regulation
across generations?

• What is the specific role and relative contribution to gene expression of microRNAs,
and what molecular mechanisms underline their effect on boosting, delaying, or
stopping gene expression?

• How can DNA repairs occur so effectively that in short periods during replication,
DNA fidelity is very accurate across organisms, regardless of genome size?

• Will genetic advancements and breakthrough technologies make it possible (in the
foreseeable future) to bring back species that have gone extinct recently or even thou-
sands or millions of years ago, based on the remains of DNA in ancient samples?
Would it require whole-genome reconstruction based on powerful predictive tools?
What implications does that have for the development of science and the equilib-
rium of ecosystems if these species were released?

1.2 Basic concepts such as lines and ellipses make sense in any metric space because
these concepts admit definitions based on distance in Euclidean spaces. What is the
geometry of DNA spaces like?
• What does a “straight” line look like (by analogy to lines in Euclidean spaces where
any three points are collinear)?
Hint: Figure 1.7a shows a full line in green color starting at tca going north and
returning to tca, the codon for the amino acid Ser (Serine), like a diamond.
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• What do other familiar geometric figures (like ellipses and parabolas) look like in
DNA spaces? Do they have any biological significance or implications?
Hint: Figure 1.7b shows the (largest) polar ellipse (underscored pmers in purple)
defined by the north and south poles as foci and a constant distance c = 2R = 4
for the sum of the h-distances of a point on it from the poles.

• Does the geometry of DNA spaces reveal anything about biological questions?
Hint: The concepts of malignancy of single nucleotide polymorphisms (Mainali
et al. 2021) and pathogenicity of bacteria and fungi (Garzon et al. 2022) in
humans have been directly related to this geometry.

1.3 Is it possible to predict the pathogenicity of one organism to another, perhaps in the
future, based on just their DNA?
Hint: Section 9.1 provides references to strong evidence that this is indeed possible.

1.4 Does the deep structure hold for RNA as well?
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