SECTION I: INTRODUCTION TO VIROLOGY

1. Introduction to Virology 2

Nicholas H. Acheson, McGill University Christopher D. Richardson, Dalhousie University

2. Virus Structure and Assembly 19

Stephen C. Harrison, Harvard University

3. Virus Classification: The World of Viruses 32

Nicholas H. Acheson, McGill University Christopher D. Richardson, Dalhousie University

4. Virus Entry 47

Ari Helenius, Swiss Federal Institute of Technology, Zurich

SECTION II: VIRUSES OF BACTERIA AND ARCHAEA

5. Single-Stranded RNA Bacteriophages 60

Jan van Duin, University of Leiden Karthik Chamakura, Armata Pharmaceuticals, Inc., Los Angeles Ryland Young, Texas A&M University

6. Microviruses 74

Bentley A. Fane, University of Arizona Aaron P. Roznowski, University of Arizona

7. Bacteriophage T7 84

William C. Summers, Yale University Ian J. Molineux, University of Texas, Austin

8. Bacteriophage T4 94

Deborah M. Hinton, National Institutes of Health, Bethesda Eric S. Miller, North Carolina State University

9. Bacteriophage Lambda 110

Michael Feiss, University of Iowa

10. Viruses of Archaea 123

David Prangishvili, Institut Pasteur, Paris Mart Krupovic, Institut Pasteur, Paris

SECTION III: POSITIVE-STRAND RNA ANIMAL VIRUSES

11. Picornaviruses 140

Bert L. Semler, University of California, Irvine

12. Flaviviruses 152

Richard Kuhn, Purdue University Shelton Bradrick, Trudeau Institute, New York

13. Hepaciviruses 164

John Lok Man Law, Memorial University of Newfoundland Michael Houghton, University of Alberta

14. Togaviruses and Rubella Virus 178

Anil Kumar, University of Saskatchewan Milton Schlesinger, Washington University, St. Louis Sondra Schlesinger, Washington University, St. Louis Tom C. Hobman, University of Alberta

15. Coronaviruses 192

Marc Desforges, Ste. Justine Hospital, Université de Montréal Pierre Talbot, Institut Armand-Frappier Mark Denison, Vanderbilt University

SECTION IV: NEGATIVE-STRAND AND DOUBLE-STRANDED RNA ANIMAL VIRUSES

16. Paramyxoviruses and Pneumoviruses 210

Nicholas H. Acheson, McGill University Daniel Kolakofsky, University of Geneva Laurent Roux, University of Geneva Christopher D. Richardson, Dalhousie University

17. Rhabdoviruses 226

Valery Grdzelishvili, University of North Carolina, Charlotte Cassandra A. Catacalos, University of North Carolina, Charlotte

18. Filoviruses 237

Heinz Feldmann, Rocky Mountain Laboratories, Montana Hans-Dieter Klenk, University of Marburg Nicholas H. Acheson, McGill University Angela Rasmussen, University of Saskatchewan

19. Bunyaviruses 251

Richard M. Elliott, University of Glasgow Lev Levanov, University of Helsinki Alexander Plyusnin, University of Helsinki

20. Influenza Viruses 262

Dalius J. Briedis, McGill University Alyson Kelvin, University of Calgary

21. Reoviruses 278

Kristen M. Ogden, Vanderbilt University Terence S. Dermody, University of Pittsburgh School of Medicine

SECTION V: SMALL DNA ANIMAL VIRUSES

22. Parvoviruses 292

Peter Beard, École Polytechnique Fédérale de Lausanne Sarah Wootton, University of Guelph

23. Polyomaviruses 302

Nicholas H. Acheson, McGill University James A. DeCaprio, Dana-Farber Cancer Institute, Harvard University

24. Papillomaviruses 318

Greg Matlashewski, McGill University
Lawrence Banks, International Centre for Genetic
Engineering and Biotechnology, Trieste
Miranda Thomas, International Centre for Genetic
Engineering and Biotechnology, Trieste

SECTION VI: LARGE DNA ANIMAL VIRUSES

25. Adenoviruses 330

Philip Branton, McGill University Richard C. Marcellus, McGill University Luca D. Bertzbach, Leibniz Institute of Virology, Hamburg Thomas Dobner, Leibniz Institute of Virology, Hamburg

26. Herpesviruses 344

Bernard Roizman, University of Chicago Gabriella Campadelli-Fiume, University of Bologna Richard Longnecker, Northwestern University Bruce Banfield, Queens University Craig McCormick, Dalhousie University

27. Poxviruses 366

Richard Condit, University of Florida Matthew D. Gresseth, Medical University of South Carolina Paula Traktman, Medical University of South Carolina

SECTION VII: VIRUSES WITH A REVERSE TRANSCRIPTASE

28. Retroviruses 382

Alan Cochrane, University of Toronto

29. Human Immunodeficiency Virus 394

Alan Cochrane, University of Toronto

30. Hepadnaviruses 406

Christopher D. Richardson, Dalhousie University William Addison, University of Alberta D. Lorne Tyrrell, University of Alberta

SECTION VIII: VIROIDS AND PRIONS

31. Viroids and Hepatitis Delta Virus 420

Jean-Pierre Perreault, Université de Sherbrooke Martin Pelchat, University of Ottawa Charith Raj Adkar-Purushothama, Université de Sherbrooke

32. Prions 431

Dalius J. Briedis, McGill University David Westaway, University of California, San Francisco

SECTION IX: VIRUSES OF PLANTS, ALGAE, AND INVERTEBRATES

33. Cucumber Mosaic Virus 444

Marilyn J. Roossinck, Pennsylvania State College of Agricultural Sciences

34. Viruses of Algae and Mimivirus, a Giant Virus 457

Michael J. Allen, University of Exeter William H. Wilson, Marine Biological Association, Plymouth John A. Duffy, University of Exeter

35. Baculoviruses 478

Eric Carstens, Queens University Robert L. Harrison, U.S. Department of Agriculture, Beltsville, Maryland

36. Viruses of Invertebrates 489

Peter Krell, University of Guelph

SECTION X: HOST DEFENSES AGAINST VIRUS INFECTION

37. Innate Immune Responses Against Virus Infection 506

Karen Mossman, McMaster University John Hiscott, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome Alessandra Zevini, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome

38. Adaptive Immune Responses to Virus Infection 527

Malcolm G. Baines, McGill University Karen Mossman, McMaster University Naglaa Shoukry, University of Montreal

SECTION XI: MEDICAL APPLICATIONS OF VIROLOGY

39. Antiviral Vaccines 542

Brian Ward, McGill University Hilary E. Hendin, McGill University

40. Antiviral Chemotherapy 562

Donald M. Coen, Harvard Medical School

41. Oncolytic Viruses 578

Vishnupriyan Kumar, Dalhousie University Liang-Tzung Lin, Taipei Medical University Shashi Gujar, Dalhousie University

42. Virus-Mediated Gene Therapy 586

Richard Peluso, Renovacor, Philadelphia Christopher D. Richardson, Dalhousie University

SECTION I: INTRODUCTION TO VIROLOGY

4		أمصلاها	l atian	40 1	Viu a	0.007	_
ı	1. 1	muoa	luction	LO	VIIO	OGY	7

THE NATURE OF VIRUSES 3

Viruses consist of a nucleic acid genome packaged in a protein coat 3

Viruses are dependent on living cells for their replication 3

Virus particles break down and release their genomes inside the cell 4

Virus genomes are either RNA or DNA, but not both 4

WHY STUDY VIRUSES? 4

Viruses are important disease-causing agents 4

Viruses can infect all forms of life 5

Viruses are the most abundant form of life on Earth 5

The study of viruses has led to numerous discoveries in molecular and cell biology 6

A BRIEF HISTORY OF VIROLOGY: THE STUDY OF VIRUSES 6

The scientific study of viruses is very recent 6

Viruses were first distinguished from other microorganisms by filtration 6

The crystallization of tobacco mosaic virus challenged conventional notions about genes and the nature of living organisms 8

The "phage group" stimulated studies of bacteriophages and helped establish the field of molecular biology 8

Study of tumor viruses led to discoveries in molecular biology and understanding of the nature of cancer 9

DETECTION AND TITRATION OF VIRUSES 10

Most viruses were first detected and studied by infection of intact organisms 10

The plaque assay arose from work with bacteriophages 10
Eukaryotic cells cultured in vitro have been adapted for plaque assays 10

Hemagglutination is a convenient and rapid assay for many viruses 11

Virus particles can be seen and counted by electron microscopy 12

Virus genome copy equivalents can be determined by quantitative polymerase chain reaction (qPCR) 12

The ratio of physical virus particles to infectious particles can be much greater than 1 12

THE VIRUS REPLICATION CYCLE: AN OVERVIEW 13

The single-cycle virus replication experiment An example of a virus replication cycle: mouse polyomavirus 13

Analysis of viral macromolecules reveals the detailed pathways of virus replication 13

STEPS IN THE VIRUS REPLICATION CYCLE 14

- 1. Virions bind to receptors on the cell surface 14
- 2. The virion (or the viral genome) enters the cell 15
- 3. Early viral genes are expressed: the Baltimore classification of viruses 15

The seven groups in the Baltimore classification system 16

- 4. Early viral proteins direct replication of viral genomes 17
- 5. Late messenger RNAs are made from newly replicated genomes 17
- 6. Late viral proteins package viral genomes and assemble virions 17
- 7. Progeny virions are released from the host cell 17

2. Virus Structure and Assembly 19

BASIC CONCEPTS OF VIRUS STRUCTURE 19

Virus structure is studied by electron microscopy and X-ray diffraction 20

Many viruses come in simple, symmetrical packages 20

CAPSIDS WITH ICOSAHEDRAL SYMMETRY 22

Some examples of virions with icosahedral symmetry 22 The concept of quasi-equivalence 23

Larger viruses come in more complex packages 24

CAPSIDS WITH HELICAL SYMMETRY 26

VIRAL ENVELOPES 26

Viral envelopes are made from lipid bilayer membranes 26
Viral glycoproteins are inserted into the lipid membrane to form the envelope 27

PACKAGING OF GENOMES AND VIRION ASSEMBLY 28

Multiple modes of capsid assembly 28

Specific packaging signals direct incorporation of viral genomes into virions 29

Core proteins may accompany the viral genome inside the capsid 29

Formation of viral envelopes by budding is driven by interactions between viral proteins 29

DISASSEMBLY OF VIRIONS: THE DELIVERY OF VIRAL GENOMES TO THE HOST CELL 30 Virions are primed to enter cells and release their genome 30
3. Virus Classification: The World of Viruses 32
VIRUS CLASSIFICATION 32 Many different viruses infecting a wide variety of organisms have been discovered 32 Virus classification is based on molecular architecture, genetic relatedness, and host organism 33 Viruses are grouped into species, genera, families and orders 33 Distinct naming conventions and classification schemes have developed in different domains of virology 34
MAJOR VIRUS GROUPS 34 Study of the major groups of viruses leads to understanding of shared characteristics and replication pathways 34 Viruses with single-stranded DNA genomes are small and have few genes 35
Viruses with double-stranded DNA genomes include the largest known viruses 35 Most plant viruses and many viruses of vertebrates have positive-strand RNA genomes 38 Viruses with negative-strand RNA genomes have helical nucleocapsids; some have fragmented genomes 39 Viruses with double-stranded RNA genomes have fragmented
genomes and capsids with icosahedral symmetry 40 Viruses with a reverse transcription step in their replication cycle can have either RNA or DNA genomes 40 Satellite viruses and satellite nucleic acids require a helper virus to replicate 41 Viroids do not code for proteins, but replicate independently of other viruses 41
THE EVOLUTIONARY ORIGIN OF VIRUSES 42 The first steps in the development of life on Earth: the RNA world 42 Viroids and RNA viruses may have originated in the RNA
world 43 The transition to the DNA-based world 44 Retroviruses could have originated during the transition to DNA-based cells 44 Small- and medium-sized DNA viruses could have arisen as independently replicating genetic elements in cells 44 Large DNA viruses could have evolved from cellular forms that became obligatory intracellular parasites 45
These arguments about the origin of viruses are only speculations 45

4. Virus Entry 47

How do virions get into cells? 47
Enveloped and non-enveloped viruses have distinct penetration strategies 48

Some viruses can pass directly from cell to cell 49 A variety of cell surface proteins can serve as specific virus receptors 49 Receptors interact with viral glycoproteins, surface protrusions, or "canyons" on the surface of the virion 50 Many viruses enter the cell via receptor-mediated endocytosis 50 Passage from endosomes to the cytosol is often triggered by low pH 52 Viral fusion proteins are cleaved by proteases prior to budding/ final assembly or during entry to reveal a fusion peptide 52 Fusion proteins undergo major conformational changes that lead to membrane fusion 53 Class I and class II fusion proteins have different structures and different fusion mechanisms 53 Non-enveloped viruses penetrate by membrane lysis or pore formation 54 Virions and capsids are transported within the cell in vesicles or on microtubules 55 Import of viral genomes into the nucleus 55 Summary of the many ways in which viral genomes are uncoated and released 56 SECTION II: VIRUSES OF BACTERIA

SECTION II: VIRUSES OF BACTERIA AND ARCHAEA

5. Single-Stranded RNA Bacteriophages 60

A glorious past: the discovery of single-stranded RNA phages stimulated research into messenger RNA function and RNA replication 60

Single-stranded RNA phages are among the simplest known organisms 61

Two genera of single-stranded RNA phages have subtle differences 61

RNA phages have a simple capsid with icosahedral symmetry that contains a single copy of the maturation protein 62

RNA phages bind to the F-pilus and use it to insert their RNA into the cell 62

Phage RNA is translated and replicated in a regulated fashion 62

RNA secondary structure controls the translation of lysis and replicase genes 64

Ribosomes translating the coat gene disrupt secondary structure, allowing replicase translation 64

Ribosomes terminating coat translation can reinitiate at the lysis gene start site 65

Replication versus translation: competition for the same RNA template 66

Genome replication requires four host cell proteins plus the replicase 66

A host ribosomal protein directs polymerase to the coat start site 67

Polymerase skips the first A residue but adds a terminal A to the minus-strand copy 67

Synthesis of plus strands is less complex and more efficient	Other Class I genes inhibit host cell functions 87
than that of minus strands 67	T7 RNA polymerase transcribes class II and III genes 88
The start site for synthesis of maturation protein is normally inaccessible to ribosomes 68	T7 RNAs are cleaved by the host enzyme ribonuclease III to smaller, stable mRNAs 88
Synthesis of maturation protein is controlled by delayed RNA	Class II genes code for enzymes involved in T7 DNA
folding 68	replication 88
Virions are formed by assembly of coat protein dimers around genome RNA 69	DNA replication starts at a unique internal origin and is primed by T7 RNA polymerase 89
Single gene lysis and release of mature phage virions 70	Large DNA concatemers are formed during replication 90
Genomics and diversity of single-stranded RNA	Class III genes direct progeny virion assembly 90
bacteriophages 70	Concatemer processing and DNA packaging require
Single gene lysis protein (Sgl) diversity 70	transcription by T7 RNA polymerase 90
Progress in genomics reveals that single-stranded RNA phages	Special features of the T7 family of phages 91
are more diverse than previously reported 71	T7 and biotechnology 91
	Phage display 92
6. Microviruses 74	
aV174, a time views with a hig impact 74	8. Bacteriophage T4 94
φX174: a tiny virus with a big impact 74 Overlapping reading frames allow efficient use of a small	Pastorianhago T4, a model virus that has played a pivotal rela
	Bacteriophage T4: a model virus that has played a pivotal role in discoveries in molecular biology 95
genome 75	in discoveries in molecular biology 95 T4 virions bind to cells via tail fibers 96
φX174 binds to glucose residues in cell surface lipopolysaccharides 76	The tail sheath contracts and phage DNA penetrates the cell
φX174 DNA delivery requires extensive structural	wall via a lysozyme at the tip of the tail tube 96
rearrangements at the cell-interacting vertex 76	T4 early genes are transcribed by host cell RNA
DNA transport requires the H-tube, an ephemeral	polymerase 99
virus-encoded DNA transporting conduit 77	T4 early gene products modify host RNA polymerase to
Stage I DNA replication generates double-stranded replicative	express T4 middle genes 100
form DNA 78	Three T4 middle gene products activate
Gene expression is controlled by the strength of promoters	late transcription 100
and transcriptional terminators 78	T4 gene products modulate messenger RNA stability 100
Replicative form DNAs are amplified via a rolling circle	Three T4 genes contain self-splicing group I introns 101
mechanism 78	T4 gene products repress translation of their own or other
Summary of viral DNA replication mechanisms 79	T4 mRNAs by binding near translation initiation
Procapsids are assembled using scaffolding proteins 79	sites 101
Scaffolding proteins have a flexible structure 80	Secondary structures in T4 messenger RNAs control
Single-stranded genomes are packaged into procapsids as they	translation of specific genes 101
are synthesized 81	T4 DNA replication begins with RNA primers and is carried
The evolution of a capsid assembly system using two	out by ten phage-coded proteins 103
scaffolding proteins 81	DNA replication switches to a recombination mode using
Role of the J protein in DNA packaging 81	D-loop primers 104
Cell lysis caused by E protein leads to release of phage 82	T4 assembles a prohead at cell membrane with aid of
Scaffolding proteins may increase the rate of assembly	chaperone proteins 105
and help small phages compete against larger phages 82	Holin-antiholin interactions control cell lysis 106
	T4 virus-like particles for phage display 107
7. Bacteriophage T7 84	T4 within the gut microbiome 108
T7: a model phage for DNA replication, transcription, and RNA processing 84	9. Bacteriophage Lambda 110
T7 genes are organized into three groups based on	Roots 110
transcription and gene function 85	Phage adsorption and DNA entry depend on cellular proteins
	o depend on conduct proteins

involved in sugar transport 111

genome 112

The λ lytic transcription program is controlled by termination

The CI repressor blocks expression of the lytic program by

and antitermination of RNA synthesis at specific sites on the

regulating three nearby promoters: PL, PR, and PRM 113

The T7 virion contains capsid, core, tail, and fiber

Entry of T7 DNA into the cytoplasm is powered by

One of the products of early transcription is a new T7 RNA

proteins 86

transcription 86

polymerase 86

A genetic switch: cleavage of CI repressor in cells with damaged DNA leads to prophage induction 115	SECTION III: POSITIVE-STRAND RNA ANIMAL VIRUSES
The Cro repressor suppresses CI synthesis and regulates early	ANIMAL VINOSES
gene transcription 115	11. Picornaviruses 140
Making the decision: go lytic or lysogenize? 115	Picornaviruses cause a variety of human and animal diseases
A quick review 116	including poliomyelitis and the common cold 140
Breaking and entering: the insertion of λ prophage DNA into	Poliovirus: a model picornavirus for vaccine development
the bacterial chromosome 116	and studies of replication 141
Excision of λ DNA from the bacterial chromosome 116	Picornavirus virions bind to cellular receptors via depressions
Int synthesis is controlled by retroregulation 118	or loop regions on their surface 142
λ DNA replication is directed by O and P but carried out by	Genome RNA may pass through pores formed in cell
host cell DNA replication proteins 119	
Assembly of λ heads involves chaperones and scaffolding	membranes by capsid proteins 142
proteins 119	Translation initiates on picornavirus RNAs by a novel internal
DNA is inserted into preformed proheads by an	ribosome entry mechanism 143
ATP-dependent mechanism 119	Essential features of picornavirus IRES elements 144
Host cell lysis is mediated by a holin and a spanin 120	Interaction of picornavirus IRES elements with host cell proteins 145
	Picornavirus proteins are made as a single precursor
10. Viruses of Archaea 123	polyprotein that is autocatalytically cleaved by viral
Archaea, the third domain of life 123	proteinases 145
Viruses of archaea have diverse and unusual	Picornaviruses encode several proteinases that cleave
morphologies 124	the polyprotein and some host cell proteins 146
Virions of Acidianus bottle-shaped virus (ABV) are released	Replication of picornavirus RNAs is initiated in a multiprotein
from host cells without cell lysis 125	complex bound to proliferated cellular vesicles 147
Acidianus two-tailed virus (ATV) has a virion with tails that	RNA synthesis is primed by VPg covalently bound to uridine
spontaneously elongate 125	residues 148
Infection with ATV at high temperatures results in	Virion assembly involves cleavage of VP0 to VP2 plus
lysogeny 125	VP4 148
Aeropyrum pernix bacilliform virus 1 (APBV-1) is a	Inhibition of host cell macromolecular functions 149
rod-shaped virus with helical symmetry and a small	Picornavirus pathogenesis and disease 150
double-stranded DNA genome 125	
Sulfolobous spindle-shaped viruses (SSV) contain positively	12. Flaviviruses 152
supercoiled DNA, and integrate their DNA into tRNA	172. 1 1441411 4363 172
genes of the host cell 128	Flaviviruses cause several important human diseases 153
Transcription of SSV1 DNA is temporally controlled 130	Yellow fever is a devastating human disease transmitted by
Members of the <i>Globuloviridae</i> family have a spherical	mosquitoes 153
enveloped virion that contains a helical DNA-protein	A live, attenuated yellow fever virus vaccine is available
complex 130	and widely used 154
Virions of the <i>Guttaviridae</i> have a droplet shape 131	Dengue virus, a tropical virus encroaching upon developed
Aeropyrum coil-shaped virus (ACV) has a helical	countries in the wake of global warming and travel 154
nucleocapsid and the largest known single-stranded DNA	Zika, a prime example of an emerging infectious disease
genome 132	with unforeseen disease manifestations 155
•	Hepatitis C virus: a recently discovered member of the
Pyrobaculum filamentous virus 1 (PFV1) is a lytic	Flaviviridae 155
virus with an enveloped virion that encloses a helical nucleocapsid 133	The flavivirus virion contains a lipid bilayer and envelope
Members of the <i>Turriviridae</i> have virions that resemble those	proteins arranged with icosahedral symmetry 155
of bacterial virus families 134	Flavivirus E protein directs both binding to receptors and
	membrane fusion 156
Sulfolobus islandicus rod-shaped virus 2 (SIRV2) has a helical	Flaviviruses enter the cell by pH-dependent fusion 157
capsid; progeny virions escape from infected cells via a	Flavivirus genome organization resembles
specialized pyramidal structure 134	that of picornaviruses 157
The lipothrixviruses and ungulaviruses have long filamentous	Flavivirus genome translation is non-canonical 157
virions that are enclosed in lipid-containing envelopes	The polyprotein is processed by both viral and cellular
and exit the cell via pyramidal protrusions 135	proteases 158
Comparative genomics of archaeal viruses 136	Nonstructural proteins organize protein processing, viral RNA
CONCLUSION 137	replication, and capping 160

Flavivirus RNA synthesis is carried out on membranes in the cytoplasm 160	Alphavirus virior symmetry wra
The flavivirus subgenomic RNA promotes virus infection 161	symmetry 18
Virus assembly also takes place at intracellular membranes 161	Rubella virus viri Several different
13. Hepaciviruses 164	as receptors fo Alphaviruses use
Hepatitis C is a blood-borne disease that is mainly spread by people who inject drugs 165	deliver their go Nonstructural pr
The discovery of hepatitis C virus led to a Nobel Prize in 2021 165	cleaved by a vi
Hepatitis C virus has a narrow host range and replicates only in humans and chimpanzees 166	Genome replicat on cellular me
The Japanese fulminant hepatitis (JFH1) strain of HCV was	Signals on genor replication and
found to grow in human hepatoma cells without the need	Trans-cleavage o
for adaptive mutations 166 Hepatitis C virions are roughly spherical but are pleomorphic	synthesis 186
and of varying size 166	Genome and sub
Nonstructural proteins are required for cleavage of the viral	NSP2 186
polyprotein, inhibition of host immunity, and	Structural protei synthesized du
replication of the HCV genome 167	Subgenomic RN
Virus entry begins with stepwise attachment to a series	translated 18
of receptors 169	Virions are assen
Following receptor binding, virions enter the cell via clathrin-	budding 188
mediated endocytosis 170	Alphaviruses inh
Genome RNA is translated into a polyprotein that is processed into individual viral proteins by four different host and viral	mechanisms
proteases 171	Alphaviruses are
RNA structural elements organize replication factors and	vaccines 190
interact with host cell microRNA-122 to stimulate HCV	
replication 171	15. Coronav
A membranous web derived from the endoplasmic reticulum is	Coronaviruses an
the site of virus replication 171	in humans 19
Virus assembly requires both nonstructural and structural proteins	Coronaviruses ca
associated with lipid droplets in the membranous web 171	economic cons
Egress and release of HCV lipoprotein particles 172	industries 19
HCV exhibits a high rate of mutation in the face of host immune surveillance and resists both neutralizing antibodies	A newly emerged
and components of innate immunity 173	epidemic of se
Mouse models allowing HCV replication were developed for	starting in 200
testing antiviral drugs 174	A coronavirus tra
Antiviral drug therapies were facilitated	emerged in the
by rational drug design based on the 3D structures of viral	but worldwide SARS-CoV-2 en
proteins 174	widespread an
Genetic variation has posed a barrier to vaccine	1918 "Spanish
development 175	Coronaviruses fa
Other mammalian hepaciviruses are being discovered 175	

14. Togaviruses and Rubella Virus 178

Transmission of togaviruses: role of mosquito vectors Rubella virus causes mild disease in humans but can cause serious birth defects 179 Alphaviruses cause a variety of human diseases that include

Alphaviruses are models for the study of virus-host interactions 180

fatal encephalitis 180

as virions contain a nucleocapsid with icosahedral etry wrapped in an envelope of the same etry 180 rirus virions lack icosahedral symmetry 181 ifferent cellular proteins have been identified ptors for alphaviruses and rubella virus 182 ises use low pH-induced fusion inside endosomes to their genomes into the cytoplasm 182 ctural proteins are made as a polyprotein that is by a viral proteinase 182 replication occurs in association with spherules ular membranes 184 n genome and antigenome RNAs coordinate RNA tion and transcription 184 eavage of NSP123 is required for positive-strand RNA sis 186 and subgenomic RNAs are capped by NSP1 and l proteins are produced from subgenomic RNA sized during the late phase of replication 187 mic RNAs are preferentially and efficiently ted 187 re assembled at the plasma membrane and released by ises inhibit host cell antiviral responses by diverse nisms 189 uses are used to generate self-amplifying RNA

ronaviruses

ruses are primarily respiratory pathogens

ruses cause veterinary disease and have great nic consequences for pets and the food and farming

emerged coronavirus caused a limited but worldwide nic of severe acute respiratory syndrome (SARS) g in 2002–2003 194

virus transmitted by dromedaries subsequently ed in the Arabian Peninsula and also caused a limited rldwide epidemic 194

oV-2 emerged in late 2019 to cause the most read and severe pandemic in the 100 years since the Spanish flu" 194

ruses fall into four genera based on genome sequences 195

Coronaviruses have large, single-stranded, positive-sense RNA genomes 195

Coronaviruses have enveloped virions containing helical nucleocapsids 196

Coronavirus virions contain multiple envelope proteins Coronavirus spike proteins bind to a variety of cellular receptors 198

The virus envelope fuses with the plasma membrane or an endosomal membrane 198

and pneumoviruses 213

Paramyxoviruses and pneumoviruses are pleiomorphic 214

The replicase gene is translated from genome RNA into a	Genome RNA is contained within helical nucleocapsids 214
polyprotein that is processed by viral proteases 198	Viral envelope proteins are responsible for receptor binding
RNA polymerase, RNA helicase, and RNA-modifying enzymes	and fusion with cellular membranes 214
are encoded by the replicase gene 199	Paramyxoviruses attach to the host cell using either sialic acid
Replication complexes are associated with cytoplasmic	or specific cell surface proteins 216
membranes 200	Respiratory syncytial virus G protein binds to cellular
Genome replication proceeds via a full-length, negative-strand	chemokine receptor 217
intermediate 200	The fusion precursor protein is activated by proteolytic
Transcription produces a nested set of subgenomic mRNAs 200	cleavage to generate a primed pre-fusion protein 217 Paramyxoviruses and pneumoviruses access the cytoplasm by
Subgenomic mRNAs are transcribed from subgenomic negative-sense RNA templates made by discontinuous	membrane fusion at the plasma membrane or less frequently with endosomes 217
transcription 202	Viral messenger RNAs are synthesized by an RNA polymerase
The discontinuous transcription model can explain	packaged in the virion 218
recombination between viral genomes 203	Viral RNA polymerase initiates transcription exclusively at the
Assembly of virions takes place at intracellular membrane	3' end of the viral genome 218
structures 203	The promoter for plus-strand RNA synthesis consists of
Coronaviruses can evolve rapidly because of high mutation	two sequence elements separated by one turn of the
rates and RNA–RNA recombination 203	ribonucleoprotein helix 220
Epidemic human coronaviruses could have arisen by mutation	mRNAs are synthesized sequentially from the 3' to the 5' end
or recombination from bat coronaviruses 203	of the genome RNA 220
An ancestor of SARS-CoV-2 may have circulated in horseshoe	The P/C/V gene codes for several proteins by using alternative
bats but the pathway of its eventual transmission to humans	translational starts and by mRNA "editing" 221
remains a mystery 204	Functions of P, C, and V proteins 222
Numerous SARS-CoV-2 variants emerged during the	N protein levels control the switch from transcription to
pandemic 205	genome replication 223
Effective vaccines against COVID-19 were rapidly produced	Virions are assembled at the plasma membrane 223
and distributed 205	
Repurposed drugs inhibit virus replication and reduce disease	17. Rhabdoviruses 226
symptoms when administered early 206	Rabies is a fatal human encephalitis caused by a rhabdovirus
SECTION IV NECATIVE STRAND AND	that is transmitted by animal bites 227
SECTION IV: NEGATIVE-STRAND AND DOUBLE-STRANDED RNA ANIMAL	Vesicular stomatitis virus is a representative rhabdovirus and
VIRUSES	one of the best-studied RNA viruses 228
VINUSES	Rhabdoviruses are bullet- or rod-shaped and have a helical
40 Danish and Danish and Danish	nucleocapsid 228
16. Paramyxoviruses and Pneumoviruses 210	Genome organization and the replication
The mononegaviruses: a group of related negative-strand RNA	cycle of rhabdoviruses 229
viruses 211	Virus attachment and entry occur via pH-dependent
Measles is a serious childhood disease caused by	endocytosis 229
a paramyxovirus 211	The matrix protein inhibits the interferon antiviral response
Canine distemper virus is a veterinary disease that emerged	of the host cell 229
from Peru in 1761 211	Viral genes are transcribed from intact ribonucleoprotein
Mumps is another childhood illness that has been controlled	complexes into five mRNAs by a "start-stop" mechanism 230
by vaccination 212	Rhabdovirus virions are assembled at the plasma membrane 230
Parainfluenza viral infections are common in the young	Nobel Prize-winning discoveries utilized the VSV G protein as a tool to study protein trafficking 231
and elderly 212	a tool to study protein transching 251
Nipah and Hendra viruses are zoonotic, highly pathogenic,	
	Reverse genetics of rhabdoviruses allows the generation
and originate from bats 212	Reverse genetics of rhabdoviruses allows the generation of recombinant viruses for basic research and a variety
and originate from bats 212 Respiratory syncytial virus and metapneumovirus, members	Reverse genetics of rhabdoviruses allows the generation of recombinant viruses for basic research and a variety of biomedical applications 232
and originate from bats 212 Respiratory syncytial virus and metapneumovirus, members of the <i>Pneumoviridae</i> family, cause lower tract respiratory	Reverse genetics of rhabdoviruses allows the generation of recombinant viruses for basic research and a variety of biomedical applications 232 VSV G pseudotyped lentivirus expression and gene therapy
and originate from bats 212 Respiratory syncytial virus and metapneumovirus, members of the <i>Pneumoviridae</i> family, cause lower tract respiratory disease 212	Reverse genetics of rhabdoviruses allows the generation of recombinant viruses for basic research and a variety of biomedical applications 232 VSV G pseudotyped lentivirus expression and gene therapy vectors 232
and originate from bats 212 Respiratory syncytial virus and metapneumovirus, members of the <i>Pneumoviridae</i> family, cause lower tract respiratory disease 212 Other paramyxoviruses have been extensively studied in the	Reverse genetics of rhabdoviruses allows the generation of recombinant viruses for basic research and a variety of biomedical applications 232 VSV G pseudotyped lentivirus expression and gene therapy vectors 232 Non-replicating VSV pseudotypes lacking G protein (ΔG-VSV)
and originate from bats 212 Respiratory syncytial virus and metapneumovirus, members of the <i>Pneumoviridae</i> family, cause lower tract respiratory disease 212	Reverse genetics of rhabdoviruses allows the generation of recombinant viruses for basic research and a variety of biomedical applications 232 VSV G pseudotyped lentivirus expression and gene therapy vectors 232

Vesicular stomatitis virus-based recombinant vaccines 234

18. Filoviruses 237

Marburg and Ebola viruses: sporadically emerging viruses that cause severe, often fatal disease 238

Most filovirus outbreaks have occurred in equatorial Africa 238

Bats or other small mammals may be the animal reservoir from which filoviruses circulate to primates and humans 240

Filoviruses are related to paramyxoviruses and rhabdoviruses 240

Filoviruses cause hemorrhagic fever 241

Filovirus genomes contain seven genes in a conserved order 241

Filovirus transcription, replication, and assembly 242

Cloned cDNA copies of viral mRNAs and viral genome RNA are used to study filoviruses 243

Multiplasmid transfection systems allow recovery of infectious filoviruses 243

Filovirus glycoprotein mediates both receptor binding and entry by fusion 244

Ebola virus uses RNA editing to make three glycoproteins from the same gene 245

Do the secreted glycoproteins play a role in virus pathogenesis? 246

Minor nucleocapsid protein VP30 activates viral mRNA synthesis in Ebola virus 247

Matrix protein VP40 directs budding and formation of filamentous particles 247

Spread of filovirus infections among humans is limited to close contacts 248

Pathogenesis of filovirus infections 248 Clinical features of infection 248

19. Bunyaviruses 251

Most bunyaviruses are transmitted by arthropod vectors, including mosquitoes and ticks 252

Some bunyaviruses cause severe hemorrhagic fever, respiratory disease, or encephalitis 253

Bunyaviruses encapsidate a segmented RNA genome in a simple enveloped particle 253

Bunyavirus protein-coding strategies: negative-strand and ambisense RNAs 254

L RNA codes for viral RNA polymerase 254

M RNA codes for virion envelope glycoproteins 254

S RNA codes for nucleocapsid protein and a nonstructural protein 256

After attachment via virion glycoproteins, bunyaviruses enter the cell by endocytosis 256

Bunyavirus mRNA synthesis is primed by the capped 5' ends of cellular mRNAs 256

Coupled translation and transcription may prevent premature termination of mRNAs 257

Genome replication begins once sufficient N protein is made 258

Virus assembly takes place at Golgi membranes 258 Evolutionary potential of bunyaviruses via genome reassortment 258

20. Influenza Viruses 262

Influenza viruses cause serious acute disease in humans, and occasional pandemics 263

Influenza virus infections of the respiratory tract can lead to secondary bacterial infections 263

Orthomyxoviruses are negative-strand RNA viruses with segmented genomes 263

Eight influenza virus genome segments code for at least 11 different viral proteins 264

Hemagglutinin protein binds to cell receptors and mediates fusion of the envelope with the endosomal membrane 264

M2 is an ion channel that facilitates release of nucleocapsids from the virion 265

Nucleocapsids enter the nucleus, where mRNA synthesis and RNA replication occur 267

Capped 5' ends of cellular pre-messenger RNAs are used as primers for synthesis of viral mRNAs 268

Viral mRNAs terminate in poly(A) tails generated by "stuttering" transcription 269

Two influenza A mRNAs undergo alternative splicing in the nucleus 270

Genome replication begins when newly synthesized NP protein enters the nucleus 270

Nucleocapsids are exported from the nucleus in a complex with matrix protein and NS2 271

The NS1 protein interferes with polyadenylation of cellular mRNAs 271

The NS1 protein also suppresses a variety of host cell antiviral response pathways 271

PB1-F2 and PA-X proteins may contribute to suppression of the host immune response 271

Viral envelope proteins assemble in the plasma membrane and direct budding of virions 272

Neuraminidase cleaves sialic acid, the cellular receptor that binds to HA 272

Influenza virus strains vary in both transmissibility and pathogenicity 273

Genetic variability generates new virus strains that can cause pandemics 273

The 1918 pandemic influenza A virus was probably not a reassortant virus 273

Genome sequences from some previous influenza A virus strains confirm the antigenic shift hypothesis 274

Highly pathogenic avian influenza A H5N1 strains in poultry farms are a potential threat but are poorly transmitted among humans 274

A new pandemic strain of influenza A virus arose by genetic shift and spread worldwide in 2009 275

integrate into the cell genome 299

Parvovirus pathogenesis: the example of B19 virus 299

Vectors derived from adeno-associated viruses are highly

efficient tools for in vivo gene delivery 300

21. Reoviruses 278 23. Polyomaviruses 302 Reoviruses were the first double-stranded RNA viruses Mouse polyomavirus was discovered as a tumor-producing discovered 279 infectious agent 303 Some reoviruses are important pathogens 279 Simian virus 40 was found as a contaminant of Salk poliovirus Members of the order *Reovirales* have segmented genomes 280 vaccine 303 Reovirus virions contain concentric layers of capsid Human polyomaviruses are widespread but cause disease only proteins 282 rarely 303 Polyomaviruses are models for studying DNA virus replication The fiber binds to one or two cellular receptors 282 During entry, the outer capsid is stripped from virions and the and tumorigenesis 303 core is released into the cytoplasm 283 Polyomavirus capsids are constructed from pentamers of the Enzymes in the viral core synthesize and cap messenger major capsid protein 304 RNAs 283 The circular DNA genome is packaged with cellular Translation of reovirus mRNAs is regulated 285 histones 304 Circular DNA becomes supercoiled upon removal of histones Interferon and PKR: effects on viral and cellular protein Supercoiled DNA can be separated from relaxed or linear synthesis 285 Synthesis of progeny double-stranded genomes occurs within DNA molecules 305 subviral particles 285 Polyomavirus genes are organized in two divergent Reoviruses induce and modulate apoptosis and interferon transcription units 306 expression in infected cells 287 Virions enter cells in caveolae and are transported to the Reovirus protein µ1 present in infecting virions induces nucleus 307 apoptosis The viral minichromosome is transcribed by cellular RNA Reovirus pathogenesis in the mouse central nervous system polymerase II 308 depends on virus strain 287 Four early mRNAs are made by differential splicing of a Reovirus infections in mice cause damage in heart and common transcript 308 T antigens share common N-terminal sequences but have liver 288 Reovirus infection can lead to autoimmune responses in different C-terminal sequences 309 mice 288 T antigens bring resting cells into the DNA synthesis (S) phase of the cell cycle 309 Small T antigen inhibits protein phosphatase 2A and induces SECTION V: SMALL DNA ANIMAL VIRUSES cell cycling 309 Middle T antigen stimulates protein tyrosine kinases that 22. Parvoviruses signal cell proliferation and division 310 Large T antigen activates or suppresses transcription of Parvoviruses have very small virions and a linear, cellular genes by binding to a number of important cellular single-stranded DNA genome 292 regulatory proteins 311 Parvoviruses replicate in cells that are going through the cell Large T antigen hexamers bind to the origin of DNA cycle 293 replication and locally unwind the two DNA strands 312 Discovery of mammalian parvoviruses 293 Large T antigen assembles the cellular DNA synthesis Parvoviruses have one of the simplest-known virion machinery to initiate viral DNA replication 312 structures 294 High levels of late transcripts are made after DNA replication Parvoviruses have very few genes 294 begins 314 Single-stranded parvovirus DNAs have unusual terminal Three late mRNAs are made by alternative splicing 315 structures 295 How do polyomaviruses transform cells in vitro and cause Uncoating of parvovirus virions takes place in the nucleus tumors in vivo? 315 and is cell-specific 295 Only nonpermissive cells can be transformed 316 DNA replication begins by extension of the 3' end of the Transformed cells integrate viral DNA into the cell terminal hairpin 296 chromosome 316 The DNA "end replication" problem 297 Steps in DNA replication 297 24. Papillomaviruses Nonstructural proteins are multifunctional 298 Adenovirus functions that help replication of adeno-associated Papillomaviruses cause warts and other skin and mucosal In the absence of helper virus, adeno-associated virus DNA can Oncogenic human papillomaviruses are a major cause

of genital tract cancers 319

DNA 320

Papillomaviruses are not easily grown in cell culture 319

Papillomavirus genomes are circular, double-stranded

The infectious cycle follows the differentiation of epithelial cells 320	The tripartite leader ensures efficient transport of late mRNAs to the cytoplasm 339
Viral mRNAs are made from two promoters and two	The tripartite leader directs efficient translation of late
polyadenylation signals 322	adenovirus proteins 339
Viral E1 and E2 proteins bind to the replication origin and	Adenovirus-induced cell killing 339
direct initiation of DNA replication 322	Cell transformation and oncogenesis by
Viral E7 protein interacts with cell-cycle regulatory proteins, particularly the retinoblastoma protein pRB 323	human adenoviruses 339 Adenoviruses as mammalian cell expression vectors 340
The retinoblastoma protein is a major regulator of the cell cycle 323	
Viral E6 protein controls the level of cellular p53 protein 324	26. Herpesviruses 344
p53 induces cell-cycle arrest or apoptosis (programmed cell death) 324	Herpesviruses are important human and animal pathogens 345
E6 proteins interact with many other cellular regulatory proteins 325	Most herpesviruses can establish latent infections 345 HERPES SIMPLEX VIRUS 346
Synergism between E6 and E7 and the predisposition to cancer 325	Herpes simplex virus genomes contain both unique and repeated sequence elements 346
Cells transformed by papillomaviruses express E6 and E7 gene products from integrated viral DNA 325	The icosahedral capsid is enclosed in an envelope along with tegument proteins 346
Future prospects for diagnosis and treatment of diseases caused by papillomaviruses 326	Entry by fusion is mediated by envelope glycoproteins and may occur at the plasma membrane or in endosomes 348 Groups of viral genes are sequentially expressed during
	the replication cycle 349
SECTION VI: LARGER DNA ANIMAL VIRUSES	Tegument proteins interact with cellular machinery to activate
25. Adenoviruses 330	viral gene expression and degrade cellular messenger RNAs 349
Adenoviruses cause respiratory and enteric infections	Immediate early (α) genes regulate expression of other herpesvirus genes 350
in humans 330	β gene products facilitate viral DNA replication 350
Adenoviruses can be oncogenic, but do not cause cancer in humans 331	DNA replication initially proceeds in a bidirectional fashion from a replication origin 351
Adenoviruses are versatile vectors for vaccination, gene therapy, and cancer treatment 331	Rolling-circle replication subsequently produces multimeric concatemers of viral DNA 351
Virions have icosahedral symmetry and are studded with knobbed fibers 331	DNA replication leads to activation of γ_1 and γ_2 genes 351
Fibers make contact with cellular receptor proteins to initiate infection 332	Viral nucleocapsids are assembled on a scaffold in the nucleus 352
Expression of adenovirus genes is controlled at the level	Envelopment of nucleocapsids begins
of transcription 333	at the nuclear membrane and is completed
E1A proteins are the kingpins of the adenovirus growth cycle 334	at Golgi membranes 352
E1A proteins bind to the retinoblastoma protein and activate E2F, a cellular transcription factor 334	EPSTEIN-BARR VIRUS 354 Epstein-Barr virus was first discovered in lymphomas
E1A proteins also activate other cellular transcription factors 335	of African children 354 Epstein–Barr virus infects mucosal epithelial cells and B
E1A proteins indirectly induce apoptosis by activation of	lymphocytes 355
cellular p53 protein 335	Epstein-Barr virus expresses a limited set of proteins in latently
E1B proteins suppress E1A-induced apoptosis and target key proteins for degradation, allowing virus replication to	infected B lymphocytes 355 Epstein–Barr virus nuclear antigens direct limited replication
proceed 336	of the viral genome and activate viral and cellular
The pre-terminal protein primes DNA synthesis carried out	genes 356
by viral DNA polymerase 336	Latent membrane proteins mimic receptors
Single-stranded DNA is circularized via the inverted terminal	on B lymphocytes 357

repeat 337

begins 338

multiple late mRNAs 338

The major late promoter is activated after DNA replication

Five different poly(A) sites and alternative splicing generate

Small, untranslated viral RNAs expressed during latent

infections target host defense mechanisms 357

KAPOSI'S SARCOMA-ASSOCIATED

HERPESVIRUS 358

Kaposi's sarcoma is a cancer that is frequently present in AIDS patients 358
Kaposi's sarcoma-associated herpesvirus infections are widespread but usually asymptomatic 358
Kaposi's sarcoma-associated herpesvirus infects epithelial cells and B lymphocytes 358
Kaposi's sarcoma-associated herpesvirus expresses many oncogenes 359
V-cyclin complexes with cyclin-dependent kinases and activates protein phosphorylation 359
Viral G protein-coupled receptor induces expression of cellular proteins that promote cell proliferation 360
VARICELLA-ZOSTER VIRUS 360
Chickenpox and shingles are human diseases caused by varicella-zoster virus 360
Varicella-zoster virus infects sensory neurons and establishes latent infections 360
Reactivation can cause shingles, a painful rash limited to a region innervated by a single nerve 361
HUMAN CYTOMEGALOVIRUS 361
Human cytomegalovirus infections are usually asymptomatic but can cause serious birth defects 361
ANTIVIRAL DRUGS DIRECTED AGAINST HERPESVIRUSES 362
VACCINES DIRECTED AGAINST
rauman cytomegalovirus vaccines 504
27. Poxviruses 366
Smallpox was a debilitating and fatal worldwide disease 367
worldwide 367
continued poxvirus surveillance 368
-
Virus entry into cells can take place by several different
pathways 370
Linear vaccinia virus genomes have covalently sealed hairpin
Varicella-zoster virus infects sensory neurons and establishes latent infections 360 Reactivation can cause shingles, a painful rash limited to a region innervated by a single nerve 361 HUMAN CYTOMEGALOVIRUS 361 Human cytomegalovirus infections are usually asymptomatic but can cause serious birth defects 361 ANTIVIRAL DRUGS DIRECTED AGAINST HERPESVIRUSES 362 VACCINES DIRECTED AGAINST HERPESVIRUSES 363 Varicella-zoster virus vaccines 363 Human cytomegalovirus vaccines 364 27. Poxviruses 366 Smallpox was a debilitating and fatal worldwide disease 367 Variolation led to vaccination, which has eradicated smallpox worldwide 367 Outbreaks of mpox infection show the importance of continued poxvirus surveillance 368 Other poxviruses infect either vertebrates or insects 368 Poxviruses are important research tools 369 Two forms of vaccinia virions have different roles in spreading infection 369 Wirus entry into cells can take place by several different pathways 370

Early gene products promote genome uncoating and DNA

Poxviruses produce large concatemeric DNA molecules that

The transition to post-replicative gene expression requires

replication 373

DNA replication 374

are resolved into monomers 373

Formation of mature virions is a complex, poorly understood process 375 Extracellular virions are extruded through the plasma membrane by actin tails 376 Poxviruses make several proteins that target host defenses against invading pathogens 376 Poxviruses perform an intricate dance with the host cell throughout infection 377 **SECTION VII: VIRUSES WITH A REVERSE TRANSCRIPTASE** 28. Retroviruses 382 Retroviruses have a unique replication cycle based on reverse transcription and integration of their genomes 383 Viral proteins derived from the gag, pol, and env genes are incorporated in virions 383 Retroviruses enter cells by the fusion pathway 384 Viral RNA is converted into a double-stranded DNA copy by reverse transcription 384 A copy of proviral DNA is integrated into the cellular genome at a random site 387 Sequence elements in the long terminal repeat direct transcription and polyadenylation by host cell enzymes 388 Differential splicing generates multiple mRNAs 389 The Gag/Pol polyprotein is made by suppression of termination and use of alternative reading frames 389 Virions mature into infectious particles after budding from the plasma membrane 389 Acute transforming retroviruses express mutated forms of cellular growth signaling proteins 390

Retroviruses lacking oncogenes can transform cells by insertion of proviral DNA near a proto-oncogene 391

HIV-1 was probably transmitted to humans from chimpanzees infected with simian immunodeficiency virus 395
HIV-1 infection leads to a progressive loss of cellular immunity and increased susceptibility to opportunistic

HIV-1 targets cells of the immune system by recognizing CD4

Virus mutants arise rapidly because of errors generated during

Unlike other retroviruses, HIV-1 directs transport of proviral

Antiviral drugs can control HIV-1 infection and prevent disease progression, but an effective vaccine has yet to be

29. Human Immunodeficiency Virus 3 Human immunodeficiency virus type 1 and acquired

immunodeficiency syndrome 395

HIV-1 is a complex retrovirus 397

reverse transcription 398

DNA into the cell nucleus 399

antigen and chemokine receptors 398

Latent infection complicates the elimination of

infections 395

developed 396

HIV-1 399

The Tat protein increases HIV-1 transcription by stimulating elongation by RNA polymerase II 400	Viroids replicate via linear multimeric RNA intermediates 422
The Rev protein mediates cytoplasmic transport of viral	Three enzymatic activities are needed for viroid
mRNAs that code for HIV-1 structural proteins 401	replication 422
Together, the Tat and Rev proteins strongly upregulate viral	How do viroids cause disease? 424
protein expression 401	Viroid RNAs interact with host cell components and induce
The Vif protein increases virion infectivity by counteracting a	biochemical changes 424
cellular deoxycytidine deaminase 402	RNA interference could determine viroid pathogenicity and
The Vpr protein enhances HIV-1 replication at multiple	cross-protection 424
levels 402	Circular plant satellite RNAs resemble viroids but are
The Vpu protein enhances release of progeny virions from	encapsidated 425
infected cells 402	Hepatitis delta virus is a human viroid-like satellite virus 426
The Nef protein is an important mediator	Hepatitis delta virus may use two different cellular RNA
of pathogenesis 403	polymerases to replicate 426
OO Hanadaavimaaa 100	RNA editing generates two forms of hepatitis delta
30. Hepadnaviruses 406	antigen 427 Delta-like agents: viruses similar to hepatitis delta virus found
At least seven distinct viruses cause human hepatitis 407	in non-human hosts 428
The discovery of hepatitis B virus 407	Conclusion: viroids and the hepatitis delta virus may be a link
Hepatitis B virus has a circular	to the ancient RNA world 428
double-stranded DNA genome and uses a	
reverse transcriptase to replicate 407	32. Prions 431
Dane particles are infectious virions; abundant non-infectious	
particles lack nucleocapsids 408	Prions are proteins that cause fatal
Distinct sequence variants of Hepatitis B virus occur in specific	brain diseases 431
regions of the world 408	Prion diseases were first detected
The viral genome is a circular, partly single-stranded DNA	in domestic ruminants 432
with overlapping reading frames 408	Bovine spongiform encephalopathy ("mad cow disease")
Nucleocapsids enter the cytoplasm via fusion and are	developed in Britain and apparently spread to humans 432
transported to the nucleus 409 The viral genome becomes a fully covalently, closed DNA	Human prion diseases can be either inherited or transmitted 432
The viral genome becomes a fully covalently-closed DNA within the nucleus 410	The infectious agent of prion diseases contains protein but no
Transcription of viral DNA gives rise to several mRNAs and a	detectable nucleic acid 433
pregenome RNA 410	PrPSc is encoded by a host cell gene 434
The roles of hepatitis B virus proteins 410	Distinct 3-dimensional structures of PrPC and PrPSc 434
The pregenome RNA is packaged by interaction with	The prion hypothesis: formation of infectious and pathogenic
polymerase and core proteins 412	prions from normal PrPC 435
Genome replication occurs via reverse transcription of	Is the prion hypothesis correct? 436
pregenome RNA 412	Pathology and diagnosis of prion diseases 438
Virions are formed by budding in the endoplasmic	Proteins of yeast and other fungi can form self-propagating
reticulum 414	states resembling prions 439
Hepatitis B virus can cause chronic or acute hepatitis, cirrhosis, and liver cancer 416	Genetics of prion diseases in mammals: mutations in the prion gene can increase occurrence of disease 439
Hepatitis B virus is transmitted by blood transfusions,	Barriers to prion transmission between different species 439
contaminated needles, and unprotected sex 416	Strain variation and crossing of the
A recombinant vaccine is available 416	species barrier 440
Antiviral drug treatment has real success 416	The nature of the prion infectious agent 440
	Can prion diseases be prevented or cured? 441

SECTION VIII: VIROIDS AND PRIONS

31. Viroids and Hepatitis Delta Virus 420

Viroids are small, circular RNAs that do not encode proteins 421

The two families of viroids have distinct properties 421

AND INVERTEBRATES

SECTION IX: VIRUSES OF PLANTS, ALGAE,

33. Cucumber Mosaic Virus 444

Mosaic disease in cucumber plants led to the discovery of cucumber mosaic virus 445

Cucumber mosaic virus has a positive-strand RNA genome enclosed in a compact capsid with icosahedral symmetry 445 The genome of cucumber mosaic virus consists of three distinct RNA molecules 446 The three genome RNAs and a subgenomic RNA are encapsidated in separate but otherwise identical particles The 3'-terminal regions of cucumber mosaic virus genome segments can fold to form a transfer RNA-like structure 447 Cucumber mosaic virus is transmitted in nature by aphids 448 The genome of cucumber mosaic virus encodes five multifunctional proteins 448	Virus entry begins by binding to and degradation of the host cell wall 462 Transcription of viral genes is temporally controlled and probably occurs in the cell nucleus 462 Progeny virions are assembled in the cytoplasm 463 Chlorovirus proteins are small and efficient 464 A virus family with a penchant for sugar metabolism: hyaluronan and chitin 464 COCCOLITHOVIRUSES 464 Viruses that control the weather 464 Many genes looking for a function 465 Expression of coccolithovirus genes is temporally regulated 466 Cheshire Cat dynamics: sex to avoid
Replication of viral RNA is associated with intracellular membranes, and requires coordinated interaction of viral RNAs, proteins, and host proteins 449 Brome mosaic virus RNA replication has been analyzed in	virus infection 467 Survival of the fattest: the giant coccolithovirus genome encodes sphingolipid biosynthesis 467
yeast cells 449 Brome mosaic virus RNA synthesis takes place on cytoplasmic membranes 450 Packaging of viral genomes 451 Cucumber mosaic virus requires protein 3a and coat protein for cell-to-cell movement and for long-distance spread	PRASINOVIRUSES 468 Small host, big virus 468 Viral genomes contain multiple genes for capsid proteins 468 It works both ways 469 Not much room for maneuver 469
within infected plants 451 Tobacco mosaic virus movement protein can direct movement of cucumber mosaic virus in infected plants 452 Mutation, recombination, reassortment, and genetic bottlenecks are involved in the evolution of cucumber mosaic virus 452	PHAEOVIRUSES 469 Seaweed viruses 469 Phaeoviruses have a temperate life cycle and integrate their genomes into the host DNA 470 Wide range in genome size and highly divergent 470
Host responses to cucumovirus infections reflect both a battle and adaptation between viruses and hosts 453 Plants respond to virus infection by RNA silencing, and cucumber mosaic virus protein 2b suppresses silencing 454 Cucumber mosaic virus supports replication of defective and satellite RNAs 454 Satellite RNAs can either attenuate or increase severity of symptoms in infected plants 455	PRYMNESIOVIRUSES AND RAPHIDOVIRUSES 470 The lesser-known Phycodnaviridae 470 MIMIVIRUSES 471 A discovery marking the dawn of the megavirus! 471 Mimivirus is unquestionably a virus 472 Why such a large genome? 472 Mimivirus has a unique mechanism for releasing its core 473 Virus replication occurs exclusively
34. Viruses of Algae and Mimivirus, a Giant Virus 457	in the cytoplasm 474 Genes coding for translation factors and DNA repair
Aquatic environments harbor large viruses 458 Phycodnaviruses are diverse and probably ancient 458	enzymes 474 Ancestors of mimivirus may have transferred genes from bacteria to eukaryotes 476
Phycodnavirology: a field in its infancy 459 Conserved structure, diverse composition 459	CONCLUSION 476
CHLOROVIRUSES 459 Chloroviruses replicate in Chlorella isolated from symbiotic hosts 459 The linear genomes of chloroviruses contain hundreds	35. Baculoviruses 478 Insect viruses were first discovered as pathogens of silkworms 479 Baculoviruses are used for pest control and to express
of genes, and each virus species encodes some unique proteins 460 Chlorovirus capsids are constructed from many capsomers	eukaryotic proteins 479 Baculovirus virions contain an elongated nucleocapsid 480 Baculoviruses produce two kinds of particles: "budded" and "occlusion-derived" virions 480
and have a unique spike 461	and occidsion-derived virions 700

Baculoviruses have large, circular DNA genomes and encode many proteins 481

Insects are infected by ingesting occlusion bodies; infection spreads within the insect via budded virions 481

Viral proteins are expressed in a timed cascade regulated at the transcription level 482

Immediate early gene products control expression of early genes 483

Early gene products regulate DNA replication, late transcription, and apoptosis 483

Late genes are transcribed by a novel virus-coded RNA polymerase 484

Baculoviruses are widely used to express foreign proteins 485

36. Viruses of Invertebrates

Invertebrate viruses outnumber the viruses found in both vertebrates and plants 489

Hosts infected by invertebrate viruses include a wide variety of organisms 489

VIRUSES WITH DOUBLE-STRANDED DNA **GENOMES** 490

Ascoviridae are spread from parasitic wasps to lepidopteran larval hosts 490

Entomopoxvirinae infect the larvae of their hosts and are embedded in occlusion bodies called spheroids 492

Iridoviridae are large iridescent viruses that replicate starting in the nucleus and then in the cytoplasm 493

Baculoviridae have proven to be commercially valuable in the agriculture, forestry, and biotechnology sectors 493

Hytrosaviridae infect the salivary glands of the tsetse fly and common house fly 494

Malacoherpesviridae are an important threat to the mollusk seafood industry 495

Nimaviridae cause white spot disease in shrimp 495

Nudiviridae have saved coconut plantations of the South Pacific but ravaged the crab and lobster fishing industries 495

Polydnaviriformidae have a symbiotic relationship with parasitic wasps and caterpillars 497

VIRUSES WITH SINGLE-STRANDED DNA **GENOMES** 498

Densovirinae, members of the Parvoviridae family, infect many different invertebrates 498

Bidensovirus is a single-stranded DNA insect virus in the Bidnaviridae family 499

VIRUSES WITH DOUBLE-STRANDED RNA **GENOMES** 499

Birnaviridae are unusual in that they have a bisegmented RNA genome 499

Sedoreoviridae are reoviruses that infect invertebrates like leafhoppers, mosquitoes, and ticks, which can serve as vectors for transmission to plants and mammals 499

Spinareoviridae are spiked reoviruses that can infect mollusks, crustaceans, ticks, mosquitoes, and wasps 499

VIRUSES WITH POSITIVE-SENSE RNA **GENOMES** 500

Roniviridae infect shrimp and crabs and have an envelope containing two glycoproteins 500

Dicistroviridae have a discistronic genome and infect a wide range of insects and crustaceans 500

Iflaviridae are one of the causes of colony collapse disorder in honeybee hives 501

Polycipiviridae mainly cause infections in ants 501

Extra small virus causes white tail disease in shrimp and

Nodaviridae have been used to study RNA replication, RNA interference, insect control, and vaccine development 502

VIRUSES WITH NEGATIVE-SENSE RNA **GENOMES** 503

Lispiviridae are negative-strand RNA viruses discovered by megasequencing of arthropods 503

Nyamiviridae are found exclusively in invertebrates and replicate in the nucleus 503

VIRUSES THAT USE A REVERSE TRANSCRIPTASE TO REPLICATE THEIR GENOMES 503

Three invertebrate virus families include mostly retrotransposons 503

SECTION X: HOST DEFENSES AGAINST VIRUS INFECTION

37. Innate Immune Responses Against Virus Infection 506

INNATE CELLULAR DEFENSE SYSTEMS AGAINST VIRAL INFECTIONS 507

DETECTION OF VIRUS INFECTION BY HOST CELLS 507

Host cell pattern recognition receptors and a variety of other molecular detection systems sense virus infection 507

A variety of toll-like receptors recognize distinctive molecules produced during virus infections 508

RIG-1-like receptors detect double-stranded RNAs 509

Cytosolic DNA sensors: the second messenger cGAMP and the cGAMP synthase pathway 510

Other sensors also recognize viral double-stranded DNA 510

C-type lectin receptors including DC-SIGN recognize carbohydrates on virus particles 510

RESPONSE OF THE CELL TO VIRUS **INFECTION** 511

Multimers of pathogen recognition receptors transmit signals that lead to activation of cytokine genes 511

Stimulator of interferon genes (STING) is activated by binding to cyclic GMP-AMP 512

Cellular recognition of virus infection leads to production of cytokines 513

Recognition of virus infection can trigger death of infected cells 514

of antigen-presenting cells 533

Other antiviral signal transduction pathways involve "inflammasomes" 514	Helper T cells are generated upon interaction of CD4 T cells with MHC-II-bound peptides 533
INTERFERONS 515	Cytotoxic T cells are generated upon interaction of CD8
Virus-infected cells secrete interferons, which protect nearby	T cells with MHC-I-bound peptides 534
cells against virus infection 515	B lymphocytes respond to antigens and are stimulated to
Interferons α , β , γ , and λ are made by different cells, bind to	differentiate into plasma cells by interaction with Tfh
different receptors, and have distinct functions 516	cells 535
Transcriptional activation occurs by binding of transcription	Antibodies come in a variety of forms 536
factors to interferon gene enhancers 516	The enormous diversity of antibody specificities 536
Interferon signal transduction is carried out via the Jak–Stat	VIRUS STRATEGIES TO COUNTER HOST
pathway 517	DEFENSES 537
Antiviral activities induced by interferons 518	Some viruses can escape host immune responses by becoming
Interferons have diverse effects on the immune system 520	latent 537
·	Interference with antigen processing and presentation allows
RNA INTERFERENCE 520	viruses to escape cell-mediated immunity 537
Small interfering RNAs are involved in combating virus	Viruses make proteins that mimic cytokines, cytokine
infections in plants and invertebrates 520	receptors, and chemokines and interfere with host
Micro RNAs are used to control gene expression	defenses 537
in vertebrates 521	Viruses evade antibody responses by targeting complement
VIRUS STRATEGIES TO COUNTER HOST	and Fc receptors 538
DEFENSES 522	Viruses evade adaptive immune responses by changing their
Viral proteins inhibit molecular adaptors and impair	antigenic structure 538
transduction signals downstream of pattern recognition	and gome of acture 550
receptors 523	OFOTION VI. MEDICAL ADDITIONS OF
Viruses target receptors or adaptors of antiviral signals	SECTION XI: MEDICAL APPLICATIONS OF
leading to degradation in the ubiquitin/proteasome	VIROLOGY
pathway 523	
Viruses regulate posttranscriptional modifications involved	39. Antiviral Vaccines 542
in host antiviral responses 523	Epidemics of infectious diseases arose as human populations
Viruses have evolved strategies to hide their nucleic acids	grew, cities became crowded, and travel became more
from detection by host sensors 524	rapid 543
•	Crude types of vaccination against viral and parasitic
38. Adaptive Immune Responses to Virus	diseases began to be developed as early as the 16th
Infection 527	century 544
	Edward Jenner and Louis Pasteur introduced the first effective
Multicellular organisms have evolved immune defenses against	antiviral vaccines 544
viruses and other pathogens 528	Embryonated chicken eggs and cell culture played
Innate immune responses are rapid and often nonspecific 528	major roles in vaccine development in the twentieth
Adaptive immune responses are slower but recognize specific	century 545
pathogens 528	Production of vaccines against avian influenza strains has been
Specialized cell types take part in the host immune	problematic 545
response 528	
Natural killer cells recognize virus-infected cells and kill them	TYPES OF ANTIVIRAL VACCINES 546
via apoptosis pathways 530	Advantages and drawbacks of "classical" vaccine types 549
Recognition of viral antigens by the adaptive immune	Newer categories of antiviral vaccines 549
system 530	HOW DO ANTIVIRAL VACCINES WORK? 550
Primary and secondary organs of the immune system harbor B	The role of the immune system in fighting
and T lymphocytes 530	viral infections 551
The major histocompatibility system and distinction of self	Adjuvants play an important role in vaccination
versus nonself 531	with inactivated or subunit vaccines 551
Two pathways for antigen processing and presentation:	Vaccines that stimulate cell-mediated immunity are being
endogenous and exogenous 532	developed 552
Dendritic cells initiate antigen-specific responses 532	
B and T lymphocytes have specific surface receptors that	NEW DEVELOPMENTS IN ANTIVIRAL
recognize antigens 532	VACCINES 552
T lymphocytes respond to peptides on the surface	New adjuvants are being developed 552

New delivery systems for viral antigens 554

Vaccination with defined proteins 554	ANTIVIRAL CHEMOTHERAPY: CURRENT
Use of live viruses with defined attenuation	SUCCESSES AND PROMISE FOR THE
characteristics 554	FUTURE 574
Use of live vectors and chimeric viruses 554	
Vaccines that can break tolerance 555	41. Oncolytic Viruses 578
The changing vaccine paradigm 555	0 1.1 1.1 1.5 1.570
ADVERSE EVENTS AND ETHICAL	Oncolytic viral therapy defined 578
	Oncolytic viral activity was discovered through anecdotal
ISSUES 556	reports in the literature 578
Vaccine-associated adverse events 556	Oncolytic viruses originate from a wide variety
Ethical issues in the use of antiviral vaccines 557	of virus families 579
Experience gained during the COVID-19 pandemic 558	Oncolytic viruses act via several distinct mechanisms 580
	Mutations in Ras GTPases are found in many cancers and
40. Antiviral Chemotherapy 562	favor the replication of oncolytic viruses 580
	Replication of some oncolytic viruses can lead to cell death
DISCOVERY AND USES OF ANTIVIRAL	in cancer cells 581
DRUGS 562	Targeting blood vessels in tumors using oncolytic viruses 582
Despite challenges, antiviral drugs are a success	The immune system can control the fate of a cancer cell by
story 562	eliminating it, living with it, or ignoring it 582
Antiviral drugs are useful for discoveries in basic research	Immunogenic cell death stimulates the recognition
on viruses 563	and processing of tumor antigens by antigen-presenting cells
How antiviral drugs are obtained 563	to produce long-lasting immunity 582
TARROTTO AND MECHANICAGO OF ANTILUDAL	Clinical efficacy and the landscape of oncolytic virus therapy 583
TARGETS AND MECHANISMS OF ANTIVIRAL	Future prospects for oncolytic virus therapies 584
DRUGS 564	1 1 / 1
Antiviral drugs are targeted to specific stages of virus infection 564	42. Virus-Mediated Gene Therapy 586
Drugs preventing attachment and entry of virions 564	Gene therapy defined 587
Amantadine blocks an ion channel and inhibits uncoating	Gene therapy strategies 587
of influenza 565	In vivo and ex vivo gene therapy 587
Drugs blocking viral gene expression 566	Pioneers of retrovirus-mediated gene therapy 588
Baloxavir blocks cap-snatching by influenza virus 567	Gene therapy using recombinant adeno-associated viruses 589
NS3/4 inhibitors and nirmatrelvir block cleavage of HCV and	Gene therapies for various cancers progressed to chimeric
SARS-CoV-2 polyproteins 567	antigen receptor T-cell therapies 590
L VI	Safety issues with gene therapy vectors 591
INHIBITORS OF GENOME REPLICATION 567	
Most nucleoside analog drugs target viral DNA or RNA	How are gene therapy vectors designed and produced? 591
polymerases 567	Adeno-associated virus vectors can be directed to a variety
Acyclovir is selectively phosphorylated by herpesvirus	of human tissues, and some can cross the blood-brain
thymidine kinases 568	barrier 593
Acyclovir is preferentially incorporated by herpesvirus DNA	Current FDA-approved human gene therapies 593
polymerases 569	Other treatments are on the horizon 594
HIV reverse transcriptase preferentially incorporates	CRISPR/Cas9 gene editing is derived from a prokaryotic
azidothymidine into DNA, leading to chain	anti-phage defense mechanism 595
termination 570	CRISPR gene therapy relies upon viral vectors and a variety of
Nucleoside analogs that are not obligate chain	gene delivery methods 596
terminators 571	CRISPR/Cas therapies are beginning to be approved for
Non-nucleoside inhibitors selectively target viral replication	treatment 596
	Concluding thoughts for the future of gene therapy 597
proteins 572	
DRUGS THAT INTERFERE WITH VIRUS	
ASSEMBLY AND EGRESS 573	GLOSSARY 599
HIV protease inhibitors were developed by rational	CREDITS AND PERMISSIONS 615
methods 573	
Neuraminidase inhibitors block release and spread of influenza	NAME INDEX 624
virus 574	SUBJECT INDEX 626
VII (L) /	