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Respiratory Physiology in Critical IlIness

| MINKYUNG KWON, MD; JOSE L. DIAZ-GOMEZ, MD

Goals

Describe the basic lung volumes and capacities and the
fundamentals of breathing mechanics.

Describe airway resistance, lung compliance, and
thoracic wall compliance as major components of
pulmonary ventilation.

Distinguish restrictive physiology from obstructive
physiology.

Describe common patterns of increased work of
breathing and their associated factors.

Describe the mechanisms of hypoxemia.

-

Introduction

The fundamental pillars of critical care medicine are the
management of the lungs, heart, and kidneys and the pro-
vision of nutritional support. The practice of critical care
medicine is often defined by abnormal respiratory physiol-
ogy and requires detailed knowledge of lung mechanics,
the mechanism of hypoxia, and the control of breathing.
Therefore, laboratory assessment in pulmonary disorders
is useful (Table 1.1; Box 1.1). Before the lungs can enable
gas exchange, air must move from the upper airway down
a series of branching small airways and reach the alveoli.
In the walls of the alveoli, capillaries form a dense network
and receive blood flowing from the pulmonary artery (from
the right ventricle) before it flows to the pulmonary vein
(and then to the left atrium). Between the capillary net-
wark and the alveoli lies a thin blood-gas barrier through
which oxygen (0,) and carbon dioxide (CO,) move, chiefly
by simple diffusion.

At rest, inspiration and expiration generate tidal velume.
After the tidal volume is exhaled, further forceful expira-
tion generates expiratory reserve volume. The volume of
air remaining in the lung is the residual volume. After rest-
ing inspiration, forceful inspiration to maximal capacity

generates inspiratory reserve volume. Volume that can be
generated by maximal inspiration to maximal expiration is
called vital capacity (Figure 1.1). Normal vital capacity is
around 3 to 5 L, and normal tidal volume is approximately
500 mL. Total minute ventilation is the product of the tidal
volume times the respiratory rate per minute.

Mechanics of Breathing

During rest, inspiration is active and expiration is pas-
sive. The most important muscle of inspiration is the dia-
phragm. When it contracts, the abdominal contents are
forced downward and forward, and the vertical dimension
of the chest cavity is increased. The external thoracic mus-
cles make the rib margins lift and move out, increasing the
transverse diameter of the thorax during forceful inspira-
tion. At functional residual capacity, the rib cage acts as
an outward force that generates negative pleural pressure.
At end-expiration, the diaphragm prevents the abdominal
organs from encroaching on the thoracic space and influ-
encing the lung in the supine or prone position. During
spontaneous breathing, these muscles expand the lung,
creating even more negative intrapleural pressure and
resulting in inspiration. During mechanical ventilation,
positive pressure from the ventilator expands the chest
wall, but the intrapleural pressure is positive.

Airway Resistance and Lung Compliance

Pulmonary ventilation and the work of breathing depend
on the airway resistance and compliance of the lungs and
the thoracic cage. Airway resistance is the pressure differ-
ence between the alveoli and the mouth divided by the
flow rate. Most airway resistance is produced in medium-
sized bronchi rather than in small bronchioles. The bron-
chial smooth muscles, located in medium-sized bronchi,
are innervated by the autonomic nervous system. Stimu-
lation of p-adrenergic receptors causes bronchodilation;
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Table 1.1 « Useful Laboratory Values in Pulmonary Disorders

Laboratory Value

Significance in Pulmonary Disorders

Arterial blood gas

Hemoglobin, glucose, urea nitrogen,

creatinine, electrolytes, calcium,
phosphorus, thyrotropin

Plasma brain natriuretic peptide

Serum bicarbonate

Alpha,-antitrypsin

Eosinophils

Hypoxia, hypercapnia, acidosis, alkalosis

Nonpulmonary causes of dyspnea

Pulmonary edema due to heart failure

Chronic hypercapnia in COPD or obesity-hypoventilation
syndrome

Alpha,-antitrypsin deficiency, obstructive pattern

Allergic asthma, parasitic infection, drug reaction,

syndromes of pulmonary infiltrates with eosinophilia

Procalcitonin
C-reactive protein

Rheumatologic serology (ANA, RF,
antisynthetase antibodies, CK, aldolase,
SS-A/SS-B, Scl-70)

Anti-GBM antibody, ANCA
Polycythemia

Bacterial pneumonia
Pneumonia

Interstitial lung disease

Pulmonary hemorrhage

Recurrent hypoventilation or obstructive sleep apnea—

associated hypoxemia

Abbreviations: ANA, antinuclear antibody; ANCA, antineutrophil cytoplasmic autoantibody; CK, creatine kinase; COPD,
chronic obstructive pulmonary disease; GBM, glomerular basement membrane; RF, rheumatoid factor.

parasympathetic activity causes bronchoconstriction and
increased airway resistance. Lung volume has an impor-
tant effect on airway resistance: As lung volume decreases,
airway resistance increases. Small airways may even close
completely at low lung volumes.

Lung compliance is defined by the volume change
per unit pressure change. Furthermore, it has 2 compo-
nents: static and dynamic lung compliance.

Static Lung Compliance
Lung tends to collapse at any degree of pulmonary infla-
tion, whereas the chest wall tends to recoil outward. This
natural trend represents compliance of both the lung and
the chest wall in static pressure-volume curves (Figure 1.2).

Lung compliance changes with various nonparenchymal
conditions. Patients with obesity, ascites, or intra-abdominal
hypertension have a stiffer chest wall; the lung and total
respiratory system compliance curves shift down and right-
ward. In contrast, massive aspiration, alveolar edema, or
fibrotic lung disease decreases the lung and total respiratory
system compliance. In a patient with acute respiratory dis-
tress syndrome (ARDS), lung volume is further reduced and
compliance is decreased. In addition, the overall volume of
tissue and chest wall may be affected by illness, so that in
ARDS the net effect on pleural pressure is unpredictable.

Static airway pressure of the respiratory system corre-
lates with plateau pressure during mechanical ventilation.
Moreover, the plateau pressure also represents the intra-
alveolar pressure during use of an end-inspiratory hold.

In passive ventilation, such as when patients are deeply
sedated or paralyzed, the chest wall compliance curve
tracks the pleural pressure. Thus, pressure measured with
an esophageal balloon can be used to approximate these
measures.

Dynamic Lung Compliance

Dynamic pressure-volume curves during inspiration and
expiration exhibit a different pattern. This phenomenon,
hysteresis, can be explained by surface tension variation
at the alveolar air-fluid interface during inspiration and
expiration. Pulmonary surfactant, a natural substance
produced by type II epithelial cells in the lung, reduces the
surface tension of the fluid layer lining the alveoli. During
inspiration, alveolar surface tension increases because
pulmonary surfactant spreads over a wider alveolar surface.
The reverse occurs during expiration, when pulmonary
surfactant condenses over a smaller alveolar surface.

Work of Breathing

Work is required to move the lung and the chest wall. The
area under the dynamic pressure-volume curve of the lungs
is used to estimate the work of breathing (WOB). During
inspiration, the elastic WOB is the work needed to over-
come elastic forces of the chest wall, lung parenchyma,
and alveolar surface tension. In addition, resistive WOB is
needed during inspiration to overcome tissue and airway
resistance. During expiration, only resistive WOB is needed.
Hence, increased WOB occurs with higher breathing rates



Chapter 1. Respiratory Physiology in Critical Illness 5

Box 1.1 * Interpretation of Blood Gas Data

Step 1. Determine whether the primary condition is
acidemia (pH <7.35) or alkalemia (pH >7.45).
Step 2. Determine whether the disorder is metabolic
(pH and Paco, changes are in the same direction)
or respiratory (pH and Paco, changes are in the
opposite direction).
Step 3. Determine whether compensation is adequate.
Metabolic acidosis: Paco, = (1.5 [HCO,]) +
8 (Correction + 2)

Acute respiratory acidosis: Increase in [HCO, ] =
APaco,/10 (Correction + 3)

Chronic respiratory acidosis: Increase in [HCO,] =
3.5 (APaco,/10)

Metabolic alkalosis: Increase in Paco, =
40 + 0.6 (AHCO,)

Acute respiratory alkalosis: Decrease in [HCO, ] =
2 (APaco,/10)

Chronic respiratory alkalosis: Decrease in [HCO, ] =
5 (APaco,/10) to 7 (APaco,/10)

Step 4. Calculate the anion gap (AG):

AG=[Na‘']-[Cl']+[HCO, ]-12+2.

If the AG is elevated (>12), calculate the osmolar
(OSM) gap (normal is <10):

OSM Gap = Measured OSM - (2 [Na*])
—(Glucose /18- SUN / 2.8).

Step 5. If an AG is present, calculate the
delta-delta ratio:

Delta — Delta Ratio = AAG / A[HCO, ].

If <1, a concurrent non-AG metabolic acidosis is likely
present. If >2, a concurrent metabolic alkalosis is
likely present.

Abbreviations: CI-, chloride; A, change in; HCO,, bicarbonate;
Na*, sodium; SUN, serum urea nitrogen.

Data from Kaufman DA. Interpretation of arterial blood gases
(ABGs) [Internet]. New York: American Thoracic Society.
€2017 [cited 2017 Sep 5]. Available from: http://www.thoracic.
org/professionals/clinical-resources/critical-care/clinical-
education/abgs.php.

and faster flow rates. With a larger tidal volume, the elastic
WOB is larger. Patients with stiff lungs tend to take small
rapid breaths, and patients with severe airway obstruction
breathe more slowly.

Closing Capacity
Lung cannot be completely empty because of airflow-
limiting segments in the small airways. Hence, expiration

Figure 1.1. Standard Lung Volumes and Capacities. After
resting inspiration, forceful inspiration to maximal capacity
generates inspiratory reserve volume. The volume that can
be generated by maximal inspiration to maximal expiration
is the vital capacity (VC). ERV indicates expiratory reserve
volume; FRC, functional residual capacity; IC, inspiratory
capacity; IRV, inspiratory reserve volume; RV, residual vol-
ume; TLC, total lung capacity; TV, tidal volume.

after development of airflow-limiting segments is effort
independent. What remains in the lungs when small air-
ways start to close is called the closing capacity. Patients
with airway disease (eg, asthma, chronic obstructive pul-
monary disease [COPD], or cystic fibrosis) are predisposed
to having a higher closing capacity, leaving a large residual
volume. The volume of air expired between closing capac-
ity and residual volume is called the closing volume.

Changes in Lung Mechanics in Acute
Respiratory Failure

In patients who are critically ill with respiratory failure, 2
types of physiologic derangement occur: obstructive and
restrictive.

Obstructive Physiology
In obstructive lung diseases, pulmonary compliance is
normal or increased, but airway resistance is increased,
especially during expiration. As mentioned above, normal
expiration is passive. However, with obstructive physiol-
ogy, such as in patients with asthma or COPD, extra work
is needed for adequate expiration.

Restrictive Physiology
Pneumonia and ARDS are examples of diseases with
restrictive physiology in which compliance of the lung,
or chest wall (or both) is decreased. The static pressure-
volume curve of the lungs or chest wall (or both) is
shifted rightward. The transpulmonary pressure (alveolar
pressure minus pleural pressure) indicates the pressure
across the alveolus and therefore across the pulmonary
capillary bed. Decreased compliance of the lungs requires
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Total lung
capacity
6 -
Total lung
_{ compliance
[0}
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S 44 Chest
= compliance
g Functional
3 residual
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T T T T r . : .
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Figure 1.2. Compliance Curves. Compliance curves for lung and chest are shown along with total lung compliance. At
small lung volumes, the negative transmural pressure of chest compliance indicates the chest wall’s natural tendency to
spring outward and expand. Lung compliance is high (ie, the slope of the curve is steep) at low Iung volumes and decreases
as the lung expands. Functional residual capacity is the summation of transmural pressures generated by the chest wall and

lung when they are equal and opposing.

increased transpulmonary pressure for tidal inspira-
tion. Further, the elastic WOB required for inspiration is
increased and is usually compensated for by rapid shal-
low breathing. The intrinsic causes of restrictive physiol-
ogy are interstitial lung diseases, pneumonia, and ARDS,
and the extrinsic causes include respiratory muscle weak-
ness, chest deformities, cardiomegaly, hemothorax, pneu-
mothorax, empyema, and pleural effusion or thickening.

Respiratory Mechanics Affecting Circulation

Higher transpulmonary pressure leads to greater imped-
ance to right ventricular outflow through the pulmonary
vascular tree. A high right ventricular afterload decreases
right ventricular output. Right ventricular preload depends
on the degree of intrapleural pressure. With mechani-
cal ventilation, intrapleural pressure increases during
inspiration, further decreasing right ventricular preload.
A stiffened chest wall increases intrapleural pressure,
decreasing right ventricular preload further. Use of posi-
tive end-expiratory pressure and the prone position can
also decrease right ventricular preload by increasing intra-
pleural pressure and stiffening the chest wall, respectively.

Neurogenic Pulmonary Edema

Acute central nervous system events such as acute head
injury, seizure, tumors, and intracranial or subarachnoid

hemorrhages can induce acute pulmonary edema within
minutes or as late as 12 to 24 hours after the event. Besides
having acute shortness of breath from pulmonary edema,
patients may have fever, tachycardia, hypertension, and
leukocytosis from sympathetic surge. The proposed
pathophysiology is that the neuronal damage increases
sympathetic tone with a catecholamine surge, which
subsequently increases systemic vascular resistance and
decreases left ventricular contractility, causing alveo-
lar capillary leakage and eventually leading to a severe
increase in intracranial pressure. Management is primarily
supportive. a-Blockers can be used, and excessive diuresis
should be avoided. The key is to treat the underlying cen-
tral nervous system insult and the increased intracranial
pressure.

Physiology of Hypoxia

Changes in Diffusing Capacity

in Critical Iliness

Gases move across the blood-gas barrier by diffusion.
The O, diffusion reserve of the normal lung is enor-
mous. However, in patients with alveolar hypoxia and
thickening of the blood-gas barrier, O, diffusion is
challenged.
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Pulmonary Vascular Resistance

Pulmonary vascular resistance is usually small and can fur-
ther decrease by recruitment and distention of capillaries.
Pulmonary vascular resistance increases at high and low
lung volumes. Hypoxia, serotonin, histamine, thrombox-
ane A,, and endothelin constrict pulmonary vasculature.
Hypoxia constricts small pulmonary arteries probably by
the direct effect of the low Po, on vascular smooth muscle.
This mechanism, called hypoxic pulmonary vasoconstric-
tion, directs blood flow away from poorly ventilated areas
of the diseased lung in the adult.

Nitric oxide, phophodiesterase inhibitors, calcium chan-
nel blockers, and prostacyclin dilate pulmonary vascula-
ture. Inhaled pulmonary vasodilators such as nitric oxide
or inhaled phophodiesterase inhibitors reduce vascular
tone locally in the well-ventilated regions, causing a shift in
blood flow away from unventilated regions toward better-
ventilated regions. Inhaled nitric oxide has been shown
to reduce shunting and improve arterial oxygenation in
patients with ARDS. Use of intravenous pulmonary vaso-
dilators, such as prostacyclin, does not change Pao, much
in patients with ARDS and pulmonary hypertension, prob-
ably because of the mixed effects of reduced pulmonary
arterial pressure, increased cardiac output, and worsened
intrapulmonary shunt.

In contrast, systemic vasodilators can produce hypox-
emia. Systemic vasodilators increase cardiac output, impair
hypoxic vasoconstriction in both well-ventilated and poorly
ventilated pulmonary vasculature, and change intracardiac
pressure or pulmonary arterial pressure, thereby altering
the distribution of pulmonary blood flow. Nitroprusside,
hydralazine, nitroglycerine, nifedipine, dopamine, and
dobutamine can produce this effect.

Physiology of Hypoxemia

The 5 mechanisms of hypoxemia are hypoventilation,
diffusion limitation, shunt, ventilation-perfusion (V/Q)
mismatch, and low inspiratory O, pressure.

Hypoventilation
Hypoventilation always increases the alveolar Pco,,
which leads to lower alveolar Pao, unless additional O, is
inspired. The treatment is to provide additional O,.

Diffusion Limitation
Diffusion of gases is limited when the blood-gas barrier is
thickened.

Shunt
This refers to blood that enters the arterial system with-
out going through ventilated areas of the lung. Hypoxemia
resulting from a shunt does not improve after adding O,.
If the shunt is caused by mixed venous blood, its size
can be calculated from the shunt equation. Shunt is an

important cause of hypoxemia in patients with ARDS and
pneumonia.

V/Q Mismatch

V/Q mismatch is the most common cause of hypoxemia,
especially in the perioperative period after general
anesthesia. A patient with V/Q mismatch has a problem
with either ventilation (air going in and out of the lungs)
or perfusion (O, and CO, diffusion at the alveoli and the
pulmonary arteries). V/Q ratios compare the amount of air
reaching the alveoli to the amount of blood reaching the
alveoli. The V/Q ratio describes the gas exchange in any
single lung unit. Regional differences in the V/Q ratio in
the upright lung cause regional changes in gas exchange.
The normal V/Q ratio is about 1, and decreases or increases
in the ratio indicate changes in the alveolar gas and end-
capillary blood composition. V/Q mismatch impairs the
uptake or elimination of all gases by the lung. Although
CO, elimination is impaired by V/Q mismatch, it can be
corrected by increasing the ventilation to the alveoli. In
contrast, hypoxemia resulting from V/Q mismatch cannot
be resolved by increased ventilation. The difference in the
CO, and O, responses results from their own dissociation
curve characteristics. Clinically, regions with low or high
V/Q ratios cause hypoxemia, impaired CO, elimination,
and increased WOB in COPD patients.

Low Inspiratory O, Pressure
Low inspiratory O, pressure causes hypoxemia even
with a normal alveolar-arterial difference in the partial
pressure of O,.

Changes in Dead Space in Critical IlIness

Dead space is the volume (not a space) that is ventilated
but does not participate in perfusion. There are 2 types
of dead space: anatomical dead space and physiologic
dead space. Anatomical dead space, normally about 150
mL, is the volume of the conducting airways. Physiologic
dead space is the volume of gas that does not eliminate
CO,. Because physiologic dead space includes airway and
alveolar dead space, it is increased in many lung diseases.
Furthermore, increased V/Q mismatch and shunt are the
most likely contributors to increased dead space in ARDS.

Supplemental 0, and CO, Retention
in COPD Patients

High fractional supplemental O, may cause CO, retention
in COPD patients because supplemental O, may increase
the partial pressure of O, in the alveoli (Pao,) in lung
units with a low V/Q ratio, inhibiting regional hypoxic
pulmonary vasoconstriction and increasing blood flow to
these units. Consequently, blood is diverted away from
better-ventilated regions, converting them to lung units
with high V/Q ratios, which increases wasted ventilation.
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Supplemental O, may cause CO, retention in COPD
patients through a second mechanism, the Haldane effect.
In this phenomenon, increased Pao, decreases the bind-
ing of both hydrogen ions and CO, to hemoglobin, thereby
increasing the amount of physically dissolved CO, and
Pco,. The decreased respiratory drive from low Paco, is a
less likely cause.

In clinical practice, COPD patients who receive supple-
mental O, to maintain normal Pao, do not retain clinically
significant levels of CO,. The use of noninvasive mechani-
cal ventilation can alleviate Co, retention while providing
enough O, in COPD patients.

Indexes of Oxygenation

Of the several indexes of oxygenation that are used, 2
are discussed here: the alveoli-arterial (A-a) gradient and
the ratio of Pao, to the fraction of inspired O, (Fio,). Both
are O, tension—based indexes (calculated from Po,) as
opposed to a concentration-based index, such as the shunt
index (calculated from the arterial O, content). The A-a
gradient and the Pao,/I'io, ratio can be affected by the fol-
lowing factors: a shunt, V/Q mismatch, congenital heart
disease, cardiac output, Fio,, temperature, low Pco,, and
0, extraction.

A-a Gradient

The A-a gradient is the gradient between an alveolus and
the arterial blood, expressed in millimeters of mercury.
Pao, is calculated with the following simplified formula
(using the sea level barometric pressure of 760 mm Hg,
water vapor pressure at 37°C of 47 mm Hg, and a respira-
tory quotient of 0.8-0.9):

Puo, = (Fio, x713) —(Paco, x1.25).

Subsequently, the A-a gradient is calculated as follows:

A-aGradient = Pao, — Pao,.

The normal value of the A-a gradient is 7 mm Hg in young
patients and 14 mm Hg in elderly patients at 21% Fio,.
The A-a gradient is increased with a higher Fio,, V/QQ mis-
match, a diffusion defect, an intracardiac shunt, or an
increased O, extraction ratio. A high Paco, due to alveolar
hypoventilation results in a normal A-a gradient, and this
is the most useful situation for using the A-a gradient.

Paoleloz Ratio

At sea level, the Pao/Fio, ratio is normally more than
500 mm Hg; that is, Pao, should exceed Fio, by 500 times in
normal lung. The Pao,/Fio, ratio is used for risk stratification,
such as in the Berlin definition of ARDS (eg, <100 indicates

severe ARDS). The Pao,/Fio, ratio, in contrast to the A-a gra-
dient, cannot be used to distinguish hypoxemia due to alve-
olar hypoventilation from hypoxemia due to other causes.
Like the A-a gradient, the Pao,/Fio, ratio is dependent on
Fio, and is highly dependent on the O, extraction ratio.

Summary

Pulmonary ventilation depends on airway resistance
and the compliance of the lungs and the thoracic cage.
Lung compliance is defined by the volume change
per unit pressure change. Massive aspiration, alveolar
edema, ARDS, or fibrotic lung disease decreases lung
compliance.

A higher breathing rate is accompanied by faster flow
rates and larger viscous WOB. With a larger tidal
volume, the elastic work is larger.

Restrictive physiology can occur in patients with
pneumonia or ARDS. In these conditions, the
compliance of the lung or chest wall (or both) is
decreased.

With obstructive physiology, airway resistance is
increased, especially during expiration.

If transmural pressure for the lungs is zero, the
system is neither inflating nor deflating. For a given
ventilator volume, the lateral distance between plateau
pressure and the chest wall compliance curve is the
transpulmonary pressure.

The 5 mechanisms of hypoxemia are hypoventilation,
diffusion limitation, shunt, V/Q mismatch, and low
inspiratory O, pressure.

Dead space is the volume that is ventilated but does
not participate in perfusion.
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