CONTENTS

- 1 Introduction to the Endocrine System, 1 Chemical Nature of Hormones, 3 Transport of Hormones in the Circulation, 7 Cellular Responses to Hormones, 7 Summary, 21
- 2 Endocrine Function of the Gastrointestinal Tract, 25
 Enteroendocrine Hormone Families and their
 Receptors, 27
 Gastrin and the Regulation of Gastric Function, 28
 Enteroendocrine Regulation of the Exocrine
 Pancreas and Gallbladder, 32
 Insulinotropic Actions of Gastrointestinal
 Peptides (Incretin Action), 35
 Enterotropic Actions of Gastrointestinal
 Hormones, 36
 Summary, 37
- 3 Energy Metabolism, 40 Overview of Energy Metabolism, 40 Key Hormones Involved in Metabolic Homeostasis, 43 Metabolic Homeostasis: the Integrated Outcome of Hormonal and Substrate/Product Regulation of Metabolic Pathways, 50 NADPH Production Through the Pentose Phosphate Pathway, 58 Overview of Energy Metabolism During the Fasting Phase, 62 Liver Metabolism During the Fasting Phase, 66 Adipose Tissue-Derived Hormones and Adipokines, 67 Appetite Control and Obesity, 69 Summary, 73
- 4 Calcium and Phosphate Homeostasis, 77
 Calcium and Phosphorus are Important Dietary
 Elements That Play Many Crucial Roles in
 Cellular Physiology, 77
 Physiologic Regulation of Calcium and
 Phosphate: Parathyroid Hormone,
 1,25-Dihydroxyvitamin D, and Fgf23, 78

- Small Intestine, Bone, and Kidney Determine Ca²⁺ and Pi Levels, 83 Pathologic Disorders of Calcium and Phosphate Balance, 91 Summary, 95
- 5 Hypothalamus-Pituitary Complex, 97 Embryology and Anatomy, 97 Neurohypophysis, 99 Adenohypophysis, 106 Summary, 123
- 6 The Thyroid Gland, 125
 Anatomy and Histology of the Thyroid
 Gland, 125
 Production of Thyroid Hormones, 126
 Transport and Metabolism of Thyroid
 Hormones, 131
 Summary, 140
- 7 The Adrenal Gland, 142
 Anatomy, 142
 Adrenal Medulla, 144
 Adrenal Cortex, 149
 Zona Glomerulosa, 159
 Pathologic Conditions Involving the Adrenal
 Cortex, 164
 Summary, 167
- 8 Life Cycle of the Male and Female Reproductive
 Systems, 170
 General Components of a Reproductive
 System, 170
 Overview of Meiosis, 170
 Basic Anatomy of the Reproductive
 Systems, 172
 Sexual Development in Utero, 174
 Female Development, 176
 Puberty, 177
 Menopause and Andropause, 182
 Summary, 183

- 9 The Male Reproductive System, 186
 Histophysiology of the Testis, 186
 Transport, Actions, and Metabolism of
 Androgens, 193
 Hypothalamus-Pituitary-Testis Axis, 195
 Male Reproductive Tract, 198
 Disorders Involving The Male Reproductive
 System, 200
 Summary, 201
- 10 The Female Reproductive System, 204
 Anatomy and Histology of the Ovary, 204
 Growth, Development, and Function of the
 Ovarian Follicle, 204
 The Human Menstrual Cycle, 214
 Female Reproductive Tract, 217
 Biology of Estradiol and Progesterone, 222
 Ovarian Pathophysiology, 223
 Summary, 224
- 11 Fertilization, Pregnancy, and Lactation, 227 Fertilization, Early Embryogenesis, Implantation, and Placentation, 227 Placental Transport, 242

The Fetal Endocrine System, 242
Maternal Endocrine Changes During
Pregnancy, 242
Maternal Physiologic Changes During
Pregnancy, 244
Parturition, 245
Mammogenesis and Lactation, 246
Contraception, 248
In Vitro Fertilization, 249
Summary, 249

Appendix A: Answers to Self-Study Problems, 251 Appendix B: Comprehensive Multiple-Choice Examination, 258 Appendix C: Abbreviations and Symbols, 264 Index, 267

Introduction to the Endocrine System

OBJECTIVES

- 1. List the main endocrine glands of the body.
- 2. List the chemical nature of the major hormones.
- Describe how the chemical nature influences hormone synthesis, storage, secretion, transport, clearance, mechanism of action, and appropriate route of exogenous hormone administration.
- Explain the significance of hormone binding to plasma proteins.
- Describe the major signal transduction pathways, and their mechanism for termination, for different classes of hormones and provide a specific example of each.

Endocrine glands secrete chemical messengers, called hormones (Box 1.1), into the extracellular fluid in a highly regulated manner. Secreted hormones gain access to the circulation, often via fenestrated capillaries, and regulate target organs throughout the body. The endocrine system is composed of the pituitary gland, the thyroid gland, parathyroid glands, and adrenal glands (Fig. 1.1). The endocrine system also includes the ovary and testis, which carry out a gametogenic function that is absolutely dependent on their endogenous endocrine function. In addition to dedicated endocrine glands, endocrine cells reside as a minor component (in terms of mass) in other organs, either as groups of cells (the islets of Langerhans in the pancreas) or as individual cells spread throughout several glands, including the gastrointestinal (GI) tract, kidney, heart, adipose tissue, and liver. In addition, there are several types of hypothalamic neuroendocrine neurons that produce hormones. The placenta serves as a transitory exchange organ, but also functions as an important endocrine structure of pregnancy.

The endocrine system also encompasses a range of specific enzymes, either cell-associated or circulating, that perform the function of peripheral conversion of hormonal precursors (see Box 1.1). For example, angiotensinogen from the liver is converted in the circulation to angiotensin I by the renal-derived enzyme renin, followed by conversion to the active hormone angiotensin II by the transmembrane ectoenzyme angiotensin I—converting enzyme (ACE) that is enriched in the endothelia of the lungs (see Chapter 7). Another example of peripheral conversion of a precursor to an active hormone involves the two sequential

hydroxylations of vitamin D in hepatocytes and renal tubular cells.

Numerous extracellular messengers, including prostaglandins, growth factors, neurotransmitters, and cytokines, also regulate cellular function. However, these messengers act predominantly within the context of a microenvironment in an autocrine or paracrine manner, and thus are discussed only to a limited extent where needed.

To function, hormones must bind to specific receptors expressed by specific target cell types within target organs. Hormones are also referred to as ligands, in the context of ligand receptor binding, and as agonists, in that their binding to the receptor is transduced into a cellular response. Receptor antagonists typically bind to a receptor and lock it in an inactive state, unable to induce a cellular response. Drugs that bind to and alter the activity of steroid hormone receptors are referred to as selective receptor modulators. For example, Tamoxifen is a mixed estrogen receptor agonist/antagonist, and thus is referred to as a "selective estrogen receptor modulator" or SERM. Loss or inactivation of a receptor leads to hormonal resistance. Constitutive activation of a receptor leads to unregulated, hormone-independent activation of cellular processes.

The widespread delivery of hormones in the blood makes the endocrine system ideal for the functional coordination of multiple organs and cell types in the following contexts:

- Allowing normal development and growth of the organism
- 2. Maintaining internal homeostasis

BOX 1.1 A List of Most Hormones and Their Sites of Production

Hormones Synthesized and Secreted by Dedicated Endocrine Glands

Pituitary Gland

Growth hormone (GH)

Prolactin

Adrenocorticotropic hormone (ACTH) Thyroid-stimulating hormone (TSH) Follicle-stimulating hormone (FSH) Luteinizing hormone (LH)

Thyroid Gland

Tetraiodothyronine (T_a; thyroxine)

Triiodothyronine (T.)

Calcitonin

Parathyroid Glands

Parathyroid hormone (PTH)

Islets of Langerhans (Endocrine Pancreas)

Insulin Glucagon

Somatostatin

Adrenal Gland

Epinephrine

Norepinephrine

Cortisol

Aldosterone

Dehydroepiandrosterone sulfate (DHEAS)

Hormones Synthesized by Gonads

Ovaries

Estradiol-17β

Progesterone

Inhibin

Testes Testosterone

Antimüllerian hormone (AMH)

Inhibin

Hormones Synthesized in Organs with a Primary Function Other Than Endocrine

Brain (Hypothalamus)

Antidiuretic hormone (ADH; vasopressin)

Oxytocin

Corticotropin-releasing hormone (CRH)

Thyrotropin-releasing hormone

Gonadotropin-releasing hormone (GnRH)

Growth hormone-releasing hormone (GHRH)

Somatostatin

Dopamine

Brain (Pineal Gland)

Melatonin

Heart

Atrial natriuretic peptide (ANP)

Kidney

Erythropoietin

Adipose Tissue

Leptin

Adiponectin

Stomach

Gastrin

Somatostatin

Ghrelin

Intestines

Secretin

Cholecystokinin

Glucagon-like peptide-1 (GLP-1)

Glucagon-like peptide-2 (GLP-2)

Glucose-dependent insulinotropic peptide (GIP; gastrin

inhibitory peptide)

Motilin

Liver

Insulin-like growth factor-I (IGF-I)

Hormones Produced to a Significant Degree by Peripheral Conversion

Lungs

Angiotensin II

Kidney

1α,25-dihydroxyvitamin D

Adipose, Mammary Glands, Other Organs

Estradiol-17β

Liver, Other Organs

Testosterone

Genital Skin, Prostate, Sebaceous Gland, Other Organs

5-Dihydrotestosterone (DHT)

Many Organs

Т,

Fig. 1.1 Major glands of the endocrine system. (From Koeppen BM, Stanton BA, editors: *Berne and Levy Physiology*, 6th ed., Philadelphia, 2010, Mosby.)

Regulating the onset of reproductive maturity at puberty and the function of the reproductive system in the adult

In the adult, endocrine organs produce and secrete their hormones in response to feedback control systems that are tuned to set-points, or set ranges, of the levels of circulating hormones. These set-points are genetically determined but may be altered by age, circadian rhythms (24-hour cycles or diurnal rhythms), seasonal cycles, the environment, stress, inflammation, and other influences.

Major forms of endocrine disease are caused by lack of hormone (e.g., hypothyroidism), excess of hormone (e.g., hyperparathyroidism) or dysfunction of receptor (hormonal resistance). It is important to appreciate that hormones often stimulate both the differentiated function and growth of target tissues and organs. This underlies the role of hormones in driving neoplastic transformation and cancer progression (i.e., the existence of hormonally responsive cancers). The pathogenesis of these and other forms of endocrine disease are discussed in the subsequent chapters.

The material in this chapter covers generalizations common to all hormones or to specific groups of hormones. The chemical nature of the hormones and their mechanisms of action are discussed. This presentation provides the generalized information necessary to categorize the hormones and to make predictions about the most likely characteristics of a given hormone. Some of the exceptions to these generalizations are discussed later.

BOX 1.2 Characteristics of Protein/ Peptide Hormones

- · Synthesized as prehormones or preprohormones
- Stored in membrane-bound secretory vesicles (sometimes called secretory granules)
- Regulated at the level of secretion (regulated exocytosis) and synthesis
- · Often circulate in blood unbound
- · Usually administered by injection
- · Hydrophilic and signal through transmembrane receptors

CHEMICAL NATURE OF HORMONES

Hormones are classified biochemically as proteins/peptides, catecholamines, steroid hormones, and iodothyronines. The chemical nature of a hormone determines the following:

- How it is synthesized, stored, and released in a regulated manner
- 2. How it is carried in the blood
- 3. Its biologic half-life (t,0) and mode of clearance
- 4. Its cellular mechanism of action

Proteins/Peptides

The protein and peptide hormones can be grouped into structurally related molecules that are encoded by gene families (Box 1.2). Protein/peptide hormones gain their specificity from their primary amino acid sequence, which